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Abstract— The accuracy of electric load forecasting is 

crucial when working on applications in power grid 

decision-making and operation. Due to the non-linear and 

stochastic behaviour of customers, the electric load 

profile is a complicated signal. In this paper, authors 

propose machine learning based automated system for 

electricity load forecasting, taking into consideration 

various variable factors that have an impact on the future 

electricity load demand. Three machine learning 

algorithms are used for evaluation of the proposed 

framework. The algorithms are evaluated on electricity 

load data collected from eastern region of Ontario, 

integrated with the weather and population data of the 

region. The Light GBM algorithm comparatively 

performs best with mean absolute error of 0.156. The 

developed system can be used for more accurate and 

efficient load forecasting applications. 

Keywords—Time series, Machine learning, ensemble 
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I. INTRODUCTION 

The analysis of time variant real-life events and 
approximation of a pattern depends on the time series 
forecasting. In the prediction of future events based on the 
study of past series of events, time series forecasting is used. 
Due to large scope and possibilities in solving real-life 
problems using time series forecasting, it has become a topic 
of interest in various fields including medical, traffic 
monitoring, finance, energy consumption and various others. 
The accuracy while estimating the variations in time series for 
future and analyzing the seasonality and trend in the data is 
important for the accuracy of a prediction system. 

Time series forecasting plays a crucial role in various 
temporal events including prediction of electricity load 
consumption. Not only is accuracy important for electric 
utility companies when estimating the variations in electric 
load for the future, but also it is considered vital to customers 
due to its application in the operation of the power grid and its 

decision making [1]. The major features which can be 
considered as hindrances while forecasting of electric load in 
upcoming days are supposed to be quite influential and they 
can resist the accuracy in prediction. Some of the influencing 
features are temperature, variable climate, humidity, 
occupancy pattern, social conventions and calendar indicators. 
The valid mapping of these influencing features and load 
variation is quite cumbersome because of non-linear and 
stochastic behaviour of electricity consumers. In the same 
context, the emanation of communication technologies, 
advanced metering infrastructure (AMI) and sensing 
methodology in the smart grid, has enabled researchers to 
monitor, analyze and record the effects of influencing features 
on electric load prediction [2]. After going through various 
research literatures, it was founded that both computational 
intelligence and classical (time series) methods had been 
already applied for forecasting the electrical load. This both 
utilized methodologies have their own limitations like, the 
classical method was criticized for having limitations of 
disability for handling non-linear data and beside this, the 
computational intelligence method was blamed for issues like 
limitations in learning capacity, handcrafted features, 
impotent learning, insufficient guiding significance and 
inaccurate appraisal. But at some extent, the above-mentioned 
issues are resolved by using few existing machine learning 
models for forecasting and they have achieved some 
improvement in the performance by using ingenious design. 

The problem which is arising as an obstacle by influencing 

factors needs to be resolved because the negative 

consequences of the tiniest prediction error are leading to 

huge economic loss. For instance, one percent increase in 

prediction error will cause a 10 million increase in overall 

utility cost [1]. Therefore, the electrical companies are 

striving very hard to come up with some decent solutions in 

terms of developing robust, fast, accurate, and simple short-

term electric load forecasting. In the previous two decades, 

various predictive models have been created due to utilization 

in the decision-making of the power grid. 
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II. LITERATURE REVIEW

Boroojni et al [3], put forward a generalized method to create 

a model so as to get offline data which has various seasonal 

cycles, like daily, weekly, quarterly and annually. With the 

help of auto-regressive and moving average (ARMA) 

components, seasonal and non-seasonal lead cycles can be 

modeled separately. 

The electric supplier needs predictions for balancing the 

electric load, demand management and supply to use by the 

electricity producing plants which has capability up to the 

required demand level. In the period of prediction, 

forecasting is categorised into the three major parts as (i) 

Long-period, (ii) Mid-period, (iii) short-period. All three 

categories are required for smooth line the electric load 

balancing, demand and supply, depending upon the 

requirement of the market. All three mentioned divisions are 

thoroughly investigated in the recent years, with different 

features, parameters and perspectives. The reviews of the 

research works can save the consumptions of electricity 

pattern from the estimation of future consumption values 

[mid- term electricity]. There are different machine learning 

models and statistical models as well, and that are used as a 

source of data about the electrical power consumption from 

the given datasets. These numbers of data repositories have 

time series representations which are based on uni-variant or 

multi-variant datasets. Time series datasets can have 

examinations in specific time stamps which vary in time, 

ranging from seconds to years. These time series datasets can 

be obtained where the values of data is varying with respect 

to time, for an example in stock market. 

In the previous research author used a hybrid short term 

electric lead forecasting. This framework consisting of some 

important module like feature engineering and pre- 

processing of data, training module and predictive module 

with an optimizing module author have used MMI Technique 

(modified mutual information) for feature selection module 

and feature data pre- processing factored conditional 

restricted Boltzmann machine (FCRBM), deep learning 

model that is used for training and forecasting method for 

optimization. They have used Genetic Wind Driven (GWDO) 

algorithm [4]. They compared four different benchmark 

models forecasting method which are Bi- Level ANN based 

accurate and fast converging (AFC-ANN), mutual 

information based artificial verbal network (MI-ANN) and 

long short- Term memory (LSTM). The finalized data set for 

model is based on historical load data on hourly basis using. 

Three USA power grid which is available publicly PJM 

electricity market. Accuracy authors get from MI-ANN is 

31.2% Bi- level = 17.3%, AFC=ANN=4.7% as a forecast 

accuracy, the average execution time of developed model is 

52S, where every model having different. Therefore, 

execution like AFC ANN is 58 s, Bi-level is 1025, MI- ANN 

is 16.5s and LSTM is 6S for the simulation of LSTM model 

is MATLAB is used as simulation platform. 

The work has been done by Deepika et al [5] exploring the 

solution for a big issue of service providers in area of cloud 

computing. In this paper author uses regression technique to 

forest the virtual machine load consumption. This approach 

having enough potential to produce good results using 

machine learning approach named multilayer perceptron 

model. During the analysis process the model provides the 

accuracy of 91%. 

III. MATERIALS AND PROPOSED METHODOLOGY

The current section in this article is separated into two 
different sections, with first part consisting of data gathering 
which defines the source and size of the data and describes the 
dataset details. Precisely, it defines various parameters of the 
dataset and their types. The second part mainly concerns about 
the proposed methodology along with algorithms used for 
evaluation.  The subsection provides a brief explanation about 
dataset pre-processing and steps which are necessary in 
feature selection. 

A. DATASET

The complete dataset was acquired from different sources to 

assemble a more comprehensive data on all the variable 

features that influence or affect the electricity load of a place. 

For evaluation of the algorithm authors have used Ontario 

dataset of Energy Load Consumption. The data was collected 

from May 2003 to January 2016. The data is recorded hourly 

from ten different cities/regions. For the initial 

experimentation authors have used the data of the east region 

of Ontario. The data contains 7 different columns namely 

“Day ID”, “Date”, “Time”, “Days of week”, “Holiday”, “Id” 

and “Load”. Total number of observations are 111072. Table 

I provide details of dataset –  

Table 1 DATASET DESCRIPTION 

Parameters Type Description 

Day ID numerical - 

Date ‘yyyy-mm-dd’ 2003-05-01 - 2015-12-31 

Time ‘hh:mm:ss’ 01:00:00 – 23:00:00 

Day of Week categorical {0,1,2,3,4,5,6} 

Holiday categorical {0, 1} 

Load numerical - 

Population and weather data corresponding to the location 

and the timestamp was collected through different legitimate 

sources for extensive study of the overall factors affecting the 

electricity load of a geographical location. The weather data 

collected consists of 26 parameters related to different sectors 

like pressure, sea level pressure, wind speed, wind direction, 

temperature, relative humidity, cloud coverage, solar 

radiation, solar elevation angle and etc. Population data was 

collected month wise for a particular location. These 

parameters were and analyzed and after proper feature 

selection were integrated with the electricity load data.  

B. METHODOLOGY

The adequate mapping of the parameters for electricity load 

forecasting requires proper analysis of the parameters in the 

feature set. The population data was preprocessed before 

integrating with the electricity load data. For feature selection 

authors have used Pearson correlation method for computing 
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pairwise correlation between the parameters and filtered the 

result with respect to load consumption. The Fig. 1 represent 

the correlation values –  

 

The parameters filtered out in feature selection are integrated 

with the main data and the population data. The final 

integrated dataset values are normalized by scaling the values 

to unit variance and removing mean value for each parameter 

independently and the preprocessed data is structured in 

stepwise format with prediction capability of 1 hour in future. 

The dataset is used for the evaluation of the algorithms. Three 

machine learning algorithms were evaluated on the dataset 

after splitting the dataset into training and test sample set. 

Time series analysis necessitates sorting algorithms capable 

of learning time-dependent patterns across a variety of 

models for other than image and sounds. Authors have used 

ensemble machine learning algorithms based on decision tree 

for the electric load data approximation. The Machine 

Learning algorithms used by authors for experimentation are 

Light GBM, Extreme Gradient Boosting and Random Forest. 

Light Gradient Boosting Machine 

LGBM [6] is a boosting framework based ensemble machine 

learning algorithm that uses decision tree as the base 

algorithm. The algorithm splits the tree leaf wise as opposed 

to other boosting algorithms that split tree level wise. The 

algorithm can handle large size data while maintaining low 

memory usage and keeping low execution time 

comparatively.  

Extreme Gradient Boosting 

It is also an ensemble machine learning algorithm based on 

boosting technique that uses decision tree as an estimator. 

Decision trees are made use of consecutively in this particular 

approach. In XGBoost [7], weights are vitally important. 

Variables, which are independent, are given weights which 

are subsequently put into the decision tree, which will be able 

to predict results. The weight factors that are predicted 

incorrectly by the tree have been enhanced, and these 

variables are put into the second decision tree to increase the 

quality. Next, this bunch of classifiers or predictors are then 

brought together to come up with a more powerful and 

precise model. 

Random Forest 

In contrast to utilizing the whole collection of features to train 

the models, the random forest classifier [8] uses an optimum 

subset of features at each split to train the models. The 

random subset of characteristics de-correlates the training 

models even further, resulting in improved overall 

performance. As a parameter, the number of characteristics 

in the subset can be specified. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The scaled and preprocessed dataset is used for the evaluatio

n of the algorithms. The dataset is split into training and testi

ng set in the ratio of 90:10 with the training set containing 9

9963 data points and testing set containing 11108 data points

. The experimental setup is given in Table 2 – 

 
Table 2 EXPERIMENTAL SETUP 

Name Parameters 

Operating System Windows 10, 64 bit 

Processor 
Intel(R) Core(TM) 7100U CPU @ 
2.40GHz   2.40 GHz 

Installed RAM 12 GB 

Graphics NVIDIA, GeForce MX110 

Graphics Memory 2 GB 

Development 
Environment 

Anaconda, Spyder 

Programming Language Python 

 

The algorithms were evaluated and compared using three 

metrics, mean absolute error (MAE), mean squared error 

(MSE) and R squared statistic for regression. Mean absolute 

error refers to the average of total of absolute error calculated, 

in which absolute error is the amount of error in your 

measurements. It is the difference between the predicted 

value and the ground truth. MAE is given as – 

 

Mean Absolute Error(MAE) =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1      (1) 

 

Where yi is the predicted value and xi is the actual value and 

n is the total number of data points. Similarly the metric MSE 

also computes the error or difference between the predicted 

value and actual value but unlike MAE, MSE calculates the 

average of square of the difference. The metric removes the 

negative signs and gives a final positive value clearly 

indicating the difference in the predictions and truth value. 

Squaring also emphasizes if there is large distance for a single 

data point as it deviates the mean helping in better assessing 

the algorithm. MSE is given by  – 

 

Mean Squared Error(MSE) =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛

𝑖=1
(2) 

 

Fig. 1 Parameter Correlation 
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Where yiis the predicted value and xi is the actual value and n 

is the total number of data points. R squared statistic was used 

for computing a accuracy metric for the regression problem. 

R-squared (R2) is a statistical method that determines the 

proportion of variation which is described by an independent 

regression model variable or variables  for a variable which 

is considered dependent. R-squared illustrates how much the 

change of one variable explains the variance of the second 

variable, while correlation clearly shows how strong the 

relationship is between an independent and dependent 

variable. R squared is given below as – 

 

𝑅 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −  
𝑆𝑆𝐸

𝑆𝑆𝑇
(3) 

 

Where SSE is Sum of Squared Errors and SST is Sum of 

Squared Total that refers to summation of squared difference 

of the dependant variable and its mean value. The results of 

the experiment for the given algorithms were computed using 

these metrics and are given algorithm wise in Table 3 –  

Table 3 COMPARATIVE ANALYSIS OF THE THREE 

MODELS 

Method MAE MSE R Squared 
Time 

taken 

Light GBM 0.156 0.05 95.004 1.608s 

XGBoost 0.155 0.047 95.222 14.681s 

Random 

Forest 
0.177 0.064 93.60 20.604s 

 

The results show that XGBoost perform better than the other 

two algorithms. The performance of Light GBM and 

XGBoost only slightly differ as per compared analysis of all 

the metrics. 

CONCLUSION  

In this study we have used time series forecasting for the 

prediction of electricity load while taking into consideration 

all possible factors that can influence the electricity 

consumption of an area. Factors like weather condition and 

population are affecting the amount of electricity 

consumption from the experiment results. Authors have 

evaluated the experiment on three machine learning 

algorithms in which XGBoost performs best in terms of 

accuracy. But comparatively Light GBM algorithm’s 

execution time is very low with negligible decrease in 

accuracy. As a conclusion Light GBM can be considered 

performing better in terms of overall efficiency. 

The accuracy of the developed system can further be 

improved with further analysis and processing of the different 

factors that influence the predictions. 
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