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Abstract. The Symbolic Aggregate approXimation algorithm (SAX)
is one of the most popular symbolic mapping techniques for time se-
ries. It is extensively utilized in sequence classification, pattern mining,
anomaly detection and many other data mining tasks. SAX as a powerful
symbolic mapping technique is widely used due to its data adaptability.
However this approach heavily relies on assumption that processed time
series have Gaussian distribution. When time series distribution is non-
Gaussian or skews over time, this method does not provide sufficient
symbolic representation. This paper proposes a new method of symbolic
time series representation named distribution-wise SAX (dwSAX) which
can deal with Gaussian as well non-Gaussian data distribution in con-
trast with the original SAX, handling only the first case. Our method
employs more general approach for symbol breakpoints selection and thus
it contributes to more efficient utilization of provided alphabet symbols.
The method was evaluated on different data mining tasks with promising
improvements over SAX.
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1 Introduction

Whenever we work with any kind of event observations taken according to the
order of time, we usually talk about time-order sequences also known as time
series.

With the raise of big data and streaming technologies we see various fields
such as healthcare, finance, security and industry where intelligent analysis and
data mining tasks take place. Aforementioned tasks in context of time series are
demanding and usually need different approaches due to data instances temporal
ordering characteristic. At the same time, time series usually capture feature rich,
highly dimensional data which make processing tasks even harder. In our work,
the high dimensionality is related to high number of data points in time series.
Dimensionality reduction and descriptive forms of time series representation are
recognized as a possible solution for highly performing data mining tasks [6]. A
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challenging area in the field of effective time series processing is their compact
data presentation without sacrificing any significant information [17]. Symbolic
representation of time series appears to be the solution to this problem.

The Symbolic Aggregate approXimation algorithm (SAX) [8] is one of the
most popular symbolic mapping techniques for time series. SAX as a powerful
symbolic mapping technique is widely used due to its data adaptability. It is
extensively utilized in sequence classification [13], pattern mining [3], anomaly
detection [7] and many other data mining tasks [9, 14, 15]. However, this ap-
proach heavily relies on assumption that processed time series have Gaussian
distribution [8]. When time series distribution is non-Gaussian or skews over
time, this method does not provide sufficient symbolic representation. This pa-
per proposes a new method named distribution-wise SAX (dwSAX) which can
deal also with non-Gaussian data distribution in contrast with the original SAX.
Our method employs more general approach for symbol breakpoints selection
and thus improves tightness of lower bounding without sacrificing other SAX
benefits.

This paper is organized as follows. Section 2 describes original SAX method
and possibilities to data distribution estimation. Section 3 introduces dwSAX -
our improvement of SAX method. Section 4 contains an experimental evaluation
of the proposed method on time series clustering and anomaly detection tasks
compared to the original SAX method. Finally, Section 5 offers some conclusions
and suggestions for future work.

2 Related work

One of efficient data stream processing problems is their high dimensionality, too
high number of data points. Possible solution to this issue is efficient symbolic
representation that represents highly dimensional data stream through less di-
mensional symbolic data stream. In past decades, many different time series rep-
resentations have been introduced. Lin et al. [8] divided methods into data adap-
tive (eg. Piecewise Linear Approximation, Singular Value Decomposition, SAX)
and non data adaptive (eg. Wavelets, Random Mappings, Discrete Fourier Trans-
formation). Recent research [11, 15, 18, 2, 10] shows activities in both method
families. In the following sections we discuss fundamentals of original SAX, and
techniques for data distribution estimation.

2.1 Symbolic representation - SAX

SAX is one of the best known algorithms for symbolic time series representation.
This method makes it possible to represent any time series of length n using a
string of any length w (w � n) with symbols from predefined alphabet. Looking
at the mentioned method, it consists of:

1. dimensionality reduction: applying Piecewise Aggregate Approximation (PAA)
[6], it significantly reduces dimensionality and preprocesses time series for
further step,
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2. discretization: mapping PAA segments into specific symbols from alphabet
based on precomputed mapping symbols table.

Concept of this method is illustrated in Figure. 1. Throughout this paper we use
common notation used also in original SAX paper [8].

Table 1: A summarization of common notation used in this paper and the original
SAX paper. [8]

C A time series C = c1, ..., cn where ci ∈ R

C̄ A Piecewise Aggregate Approximation of a time series C̄ = c̄1, ..., c̄w

Ĉ A symbol representation of a time series Ĉ = ĉ1, ..., ĉw

w The number of PAA segments representing time series C

a Alphabet size (e.g., for the alphabet = {a,b,c}, a = 3)

Dimensionality reduction Intuition based on aforementioned description is
to reduce time series from n dimensions into w dimensions. This goal is simply
achieved by division of the time series into w equal sized pieces. For each piece,
mean value is calculated and this value represents underlying vector of w original
values. Total vector of all pieces becomes new reduced representation of the
original time series.

More formally, a time series C of length n can be reduced into a w-dimensional
time series by a vector C̄ = c̄1, ..., c̄w where ith element of C̄ is calculated as fol-
lows [8]:

c̄i =
w

n

n
w i∑

j= n
w (i−1)+1

cj (1)

Discretization Discretization step replaces PAA segments obtained in the
length reduction step by alphabet symbols. Assuming data are normalised before
reduction (with zero mean) and have highly Gaussian distribution, the replace-
ment is performed as follows. We first precompute a table of breakpoints. Lin et
al. [8] defined breakpoints as sorted list of numbers B = β1, ..., βa−1 such that
the area under a N(0, 1) Gaussian curve from βi to βi+1 = 1/a (β0 and βa are
defined as −∞ and ∞, respectively).

The Gaussian curve enables efficient breakpoints table precomputation, thus
the discretization step is trivial in comparison to the single vector lookup oper-
ation.

Finally, formal definition of SAX as proposed by Lin et al. [8]: A subsequence
C of length n can be represented as a word Ĉ = ĉi, ..., ĉw as follows. Let αi denote
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Fig. 1: Concept of Original SAX. Background grey thin line is replaced with bold
line segments (PAA). PAA segments are mapped by normal distribution sketched
on y axis into symbols, a = (−∞;−0.43〉, b = (−0.43; 0.43〉, c = (0.43,∞). [8]

the ith element of the alphabet, i.e., α1 = a and α2 = b. Then the mapping from
a PAA approximation C to a word Ĉ is obtained as follows:

ĉi = αj , iif βj−1 ≤ c̄i < βj (2)

2.2 Techniques for distribution estimation

In the previous section we discussed internals of the original SAX method. SAX
uses a Gaussian distribution to derive the regional breakpoints resulting in the
generation of an equiprobable set of symbols. As we already mentioned, our
method wants to make a new SAX method Gaussian distribution requirement
free. In this section we want to mention other methods how to estimate data
distribution and, based on them, improve SAX by a different way of setting the
regional breakpoints. At the beginning, we want to state a common intuition
to graphically represent data distribution - histogram plotting from underlying
time series data points.

The histogram is former nonparametric density estimator with strong use
in explorative data analysis for displaying and summarizing data. Bin width is
an important parameter that needs selection prior histogram construction. It is
evident that the choice of the bin width has a strong effect on the shape of the
resulting histogram.

There were proposed many ways to determine optimal bin width ĥ with n
observed instances such as [16]:

ĥ =
range of data

1 + log2n
(3)

or alternatively more general formula based on Mean Integrated Squared Error
(MISE):

ĥ = Ĉn−1/3, (4)

where Ĉ is any selected statistic. Most known example of above mentioned for-
mula is normal reference rule [12, 16]:

ĥ = 3.49σ̂n−1/3, (5)
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where σ̂ is an estimate of the standard deviation.

Fig. 2: Comparison of two histograms for the same dataset with bin widths 0.2
and 0.5 respectively. Incorrectly selected bin width causes visually different data
distribution.

In past four decades there was a research in the field of distribution esti-
mation using continuous functions - density estimators. Intuition behind kernel
estimators is to describe underlying data histogram with smooth continuous line.
More formally, given a set of N training data yn, n = 1, ..., N , a kernel density
estimator (KDE), with the kernel function K and a bandwidth parameter h,

(h ∈ R;h > 0), gives the estimated density f̂(y) for data y as follows [4]:

f̂(y) =
1

N

N∑
n=1

K(
y − yn
h

) (6)

Kernel function K should satisfy positivity and integrate-to-one constraints
[4]:

K(y) ≥ 0,

∫
R+

K(y)dy = 1 (7)

The quality of a kernel estimate depends less on the chosen K than on the
bandwidth value h. It’s crucial to choose the most suitable bandwidth as a value
that is too small or too large will result in not useful estimation. Small values of h
lead to undersmoothing estimates while larger h values lead to oversmoothing [5].
Figure 3 illustrates possible cases of incorrectly selected bandwidth parameter
h.
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Fig. 3: Implications of different KDE bandwidth parameter selection Gaussian
kernel. Optimal (blue line), oversmoothing (green line) and undersmoothing (or-
ange line) bandwidths.

3 Distribution-wise SAX (dwSAX)

Formerly proposed SAX method is not well suited for time series with non-
Gaussian distribution. If we apply Gaussian distribution lookup vector for break-
points, we get non-optimal, still feasible, breakpoints. Our modified implementa-
tion focuses on elimination of this deficiency. Algorithm 1 illustrates overall main
function method flow where input is sequence for symbolization, word length,
alphabet size and bandwidth for kernel estimator result is sax representation
of input sequence. In the next sections we will discuss specific internals of our
method:

1. probability density function estimation: given normalized time series, we need
to estimate probability density function to proceed with more precise break-
points;

2. breakpoints vector calculation: having probability density function, the task
is to calculate equiprobable breakpoints covering the domain of pdf.

Data: Sequence, WordLength, AlphaSize, Bandwidth
Result: SAX Repr
PAA Sequence = ApplyPAA(Sequence, WordLength);
PDF Estimate = EstimatePDF (Sequence);
Breakpoints Vector = CalculateBreakpoints(AlphaSize, PDF Estimate);
SAX Repr = Map(PAA Sequence, Breakpoints Vector);

Algorithm 1: dwSAX main algorithm

3.1 Probability density estimation

With transformed PAA time series we can proceed with probability density
estimation. Intuition behind probability density estimation is illustrated in figure
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3.1. Having precisely estimated probability function will help us in further step
breakpoints vector calculation for discretization procedure. Naive solution to this
problem seems histograms exploitation as its computational complexity is much
lower than the other methods such as KDE. The main drawback of histograms is
their discrete representation which is not suitable for breakpoints interpolation.
Our method for breakpoints calculation expects continuous probability function
suitable for integral calculus with integrate-to-one constraint. KDE appears to
be the solution to this problem. This methods needs to specify a kernel function
K and a bandwidth parameter h. Selection of appropriate kernel function and
bandwidth function depends on data and required precision of overall symbolic
representation performance. To our best knowledge, Gaussian kernel gives most
relevant results and should be applied as first possible option. The difference
between dwSAX and SAX is depicted in Figure 4.

(a) Example of SAX representation.
Resulting symbolic string: eeeeeeeeedbabaabbaab

(b) Example of dwSAX representation.
Resulting symbolic string: deddeddeecbabbabbabb

Fig. 4: Application of different pdf on breakpoints selection. a) SAX with Gaus-
sian distribution, b) dwSAX with KDE. KDE based breakpoints bring more
precise symbolic representation compared with SAX with same alphabet size 5
and PAA=2.
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3.2 Breakpoints vector calculation

Having estimated probability function using KDE, we can advance and estimate
breakpoints based on probability distribution of time series. The main goal is to
efficiently compute those breakpoints as we do not apply only specific Gaussian
distribution and its precomputed values table. However, the idea for breakpoints
selection is the same - select points from KDE probability density function (pdf)
such that they produce equal-sized areas under KDE function curve.

Definition 1. Let a denote alphabet size, pdf probability density function and
βn, βn+1 any two consecutive breakpoints from breakpoints vector B. Then break-
points vector B is defined as a vector of ordered breakpoints β such that βn, βn+1

follows: ∫ βn+1

βn

pdf(y)dy =
1

a
(8)

Discretization process follows the same algorithm as proposed in the original
SAX method. For reference see algorithm 2.

Data: PAA Sequence, Breakpoints Vector B
Result: SAX Representation
foreach Segment in PAA Sequence do

for i← 2 to Length(B) do
if B[i− 1] ≤ Segment and Segment < B[i] then

Append(SAX Representation, Alphabet[i])
end

end

end

Algorithm 2: dwSAX mapping procedure

4 Evaluation

We evaluated our proposed method modification using data mining tasks such as
time series clustering and novelty/anomaly detection with the former method.
As far as we know, there is no similar symbolic representation method that we
can compare with, except of the SAX. In the next sections we discuss achieved
results with their implications in real life method exploitation.

4.1 Clustering

Clustering is by nature one of the most commonly used data mining tasks. For-
mally, clustering is the division of data into groups of similar objects [1]. Tra-
ditionally, clustering techniques are divided into hierarchical and partitioning
method families. For purposes of our evaluation, we decided to employ hierar-
chical clustering and correctly graphically illustrate results. In this data mining
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task evaluation we used well known Control Chart dataset1 with selected Nor-
mal, Cyclic, Increasing trend and Decreasing trend charts represetatives.

Hierarchical clustering gives us a brief overview how are performing com-
pared similarity measures. Similarity measure is in case of dwSAX and SAX
virtually the same but symbolized sequences of time series are expected to be
more closely clustered together within specific subtree. Figure 5 shows resulting
dendrograms after applying aglomerative hierarchical clustering with Euclidean
distance as similarity measure. Both dendrograms seem to be correct at class
level series subtrees (second level subtrees from the bottom of dendrogram).
Small differences can be observed at intra-class level subtrees clustering where
dwSAX clusters more similar series in a common subtree depicting significantly
smaller distance between them.

Fig. 5: A comparison of hierarchical clustering of selected Control Chart series.
Both methods performs well, dwSAX gives more detailed clustering inside spe-
cific series class.

4.2 Novelty/Anomaly Detection

Novelty or anomaly detection is common data mining task, usually applied in
data cleaning / preprocessing step or as targeted task. This process consists of
learning phase and detection phase itself. In learning phase, we try to infer nor-
mal behavior model from observed data and apply it in detection phase. SAX and
dwSAX are candidates for improving such kind of detection. Designed detection
model consists of symbolization produced by specific SAX method and Markov
chain model for encoding normal behavior motifs from produced symbolic repre-
sentation. During detection phase, we replay window of last N symbols and sign

1 Available at: https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series
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current symbol as anomaly when detection statistic is below specific threshold.
We compared performance of mentioned methods on two different time series of
the same length: a) periodical slightly noisy sine time series, b) periodical time
series with strong seasonality. Figure 6 shows the results. In evaluation dataset
there were 4 real anomalies and 6 temporal phases with not clear anomalous
state. From the detection report we see that both methods are able to help in
detection of clear anomalies (4 of 4) in strongly periodical time series. dwSAX
slightly outperform SAX in detection of temporal unclear phases (3 of 6).

Fig. 6: A comparison of anomaly detection of real life household electricity con-
sumption dataset. I. 1000 points training dataset II. 1000 points test dataset.
III. and IV. detection using SAX and dwSAX respectively. Red, orange and grey
areas depict commonly detected anomalies, dwSAX only detected anomalies and
not detected anomalies respectively.

5 Conclusion and Future work

As stated in the Introduction, our main goal was to improve symbolic representa-
tion of time series with non-Gaussian data distribution. Lin et al. [8] proposed a
superior method for symbolic representation of time series - SAX. Although this
approach is interesting, it suffers from support for time series with non-Gaussian
data distribution. We believe that we have designed an innovative solution to this
problem. Our approach extends original SAX by means of dynamically captured
data distribution of underlying time series and defining alternative vector of
breakpoints for characters mapping. Data distribution estimation at its simplest
form could be estimated through well-known and widely applicable histograms.
However, this approach suffers from the ease of dynamic computation of break-
points. An alternative solution, though with high overheads is estimation using
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continuous, function based, estimator. Density estimators appear to be a solu-
tion to this problem. The most common variants of these estimators are kernel
density estimators.

This method represents a viable alternative to original SAX method. We
compared our method with original SAX in two data mining tasks: clustering
of time series and anomaly detection. As stated in the Evaluation, our method
was able to improve clustering performance by means of significant lowering
objective function over original SAX within the same number of iterations. In
anomaly detection, both methods detected major anomalies in provided time
series. However, our method detected in addition to major anomalies also less
evident ones. This was possible achieved by improved breakpoints vector with
higher resolution for highly probable values in time series.

The most important limitation lies in unnecessary KDE application in case
of highly Gaussain distributed data. Applying both methods in this case will re-
sult in very similar symbolic representation. KDE estimates breakpoints similar
to precomputed breakpoints from SAX table, but with undoubtly higher com-
putational complexity. On the other had, applying dwSAX without any prior
knowledge of data distribution will safely produce efficient symbolic representa-
tion. A number of potential shortcomings need to be considered. First, compu-
tational complexity of KDE and breakpoints vector recalculations needs to be
considered in case of online exploitation. Second, the concept drift at its basis is
not covered in proposed method, thought KDE with periodical recalculation is
able to overcome a skew in data distribution to some extend. Third, knowledge
of breakpoints vector used during discretization is crucial for further operations
such as time series indexing. Despite this we believe that our work could be
a springboard for research in the field of data distribution-wise symbolic time
series representation.

This study has gone some way towards enhancing our understanding of ef-
ficient symbolic time series representation. To further our research we plan to
design online version of our method to tackle computational complexity with
hard online processing constraints. Our results are promising and should be val-
idated by a larger sample size time series from real-life environments.
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