
978-1-6654-8775-7/22/$31.00 ©2022 IEEE 

Comparison of Neural Models for Modeling 
Dynamic Changes in Microgrids 

 

Slavomír Kajan 
Institute of Robotics and Cybernetics 

Slovak University of Technology 
Ilkovičova 3, Bratislava 81219, 

Slovak Republic  
slavomir.kajan@stuba.sk 

Jozef Goga 
Institute of Robotics and Cybernetics 

Slovak University of Technology 
Ilkovičova 3, Bratislava 81219, 

Slovak Republic  

jozef.goga@stuba.sk 

Peter Mácsik 
Institute of Robotics and Cybernetics 

Slovak University of Technology 
Ilkovičova 3, Bratislava 81219, 

Slovak Republic  
peter.macsik@stuba.sk 

Jarmila Pavlovičová 
Institute of Robotics and Cybernetics 

Slovak University of Technology 
Ilkovičova 3, Bratislava 81219, 

Slovak Republic  

jarmila.pavlovicova@stuba.sk 

Ladislav Körösi 
Institute of Robotics and Cybernetics 

Slovak University of Technology 
Ilkovičova 3, Bratislava 81219, 

Slovak Republic  
ladislav.korosi@stuba.sk 

 
 

 

Abstract—Connecting renewable resources to the electricity 

network while ensuring the voltage and frequency stability of 

the network is not an easy task. Optimizing performance, 

ensuring stability, and efficiency are the main features of smart 

grids. To ensure network stability, it is necessary to model 

dynamic events in the smart grid. This paper deals with the 

comparison of neural models for modeling dynamic changes in 

the microgrid. The simulations were carried out on a single-

node microgrid with solar energy and batteries in the MATLAB 

environment. Nonlinear autoregressive exogenous model 

(NNARX), Long short-term memory (LSTM), Gated recurrent 

unit (GRU) models were used to model the dependence of 

voltage on load change and battery mode. Individual neuron 

models are graphically compared and their quality evaluated.  

Keywords— neural model, microgrid, NNARX, LSTM, GRU, 

neural network 

I. INTRODUCTION 

Nowadays, how to obtain and connect energy from 
renewable sources to the electricity network while ensuring 
voltage and frequency stability is a popular topic among 
researchers. Among renewable sources, solar energy has the 
greatest potential for use. The solution of how to connect 
renewable resources to the electricity network is the creation 
of smart grids. Optimizing performance, ensuring stability, 
and efficiency are the main features of smart grids. The grid 
itself can be divided into several separate microgrids. To 
ensure network stability, it is necessary to model dynamic 
events in the microgrid. One modeling approach is to create 
an analytical model that needs to be properly parameterized 
[1-7]. The main disadvantage of this approach is the 
complexity of the physical model with a large number of 
parameters and the need for an expert in the parameterization 
of the model. Our approach creates a dynamic model from the 
measured data using neural networks [8-13]. The most 
popular neural network model for modeling nonlinear 
dynamic systems is the so called NNARX model [9,14], 
which uses a multi-layer feedforward perceptron network to 
model the parameters of the linear ARX model [14]. 
Nowadays, recurrent neural networks (RNN) [15], 
specifically models with LSTM and GRU [10-13], are more 
often used to model non-linear dynamic systems. This paper 
aims to compare these neural network models on the basis of 
their ability to model dynamic changes in the microgrid. Data 
for training and testing purposes were obtained from a single-

node grid simulation model, which includes solar energy and 
batteries in the MATLAB environment [1]. Models were used 
to model the dependence of voltage on load change and 
battery mode. Models are compared graphically and evaluated 
for quality. 

II. SIMULATION MODEL OF MICROGRID AND DATA FOR 

NEURAL MODELS 

As an example of a microgrid, we chose a single-node 
microgrid with solar energy, batteries, and variable load [1]. 
The microgrid simulation scheme was created in the 
MATLAB environment using the Simscape Power Systems 
library [17]. The block diagram of the microgrid is shown in 
Fig. 1. The nominal parameters of the electrical network are a 
voltage of 5 kV and frequency of 50 Hz. The nominal 
performances of individual energy sources and loads are 
shown in TABLE I. Change in grid voltage and frequency was 
achieved by changing load scenarios and battery charging 
modes. We also alternated the battery charging and 
discharging modes with load changes.  

 

Fig. 1: Block diagram of a single-node microgrid [1].  



The time responses of input variables on the grid (variable 
load and battery power) are shown in Fig. 2. The input into the 
neural network was formed by the sum of these two input 
variables. The time responses of the grid output variables (grid 
voltage and frequency) are shown in Fig. 3 and Fig. 4, 
respectively. The simulation data were captured with a 
sampling period of 0.01 s.  

 

Fig. 2: Time responses of variable load and battery power.  

 

Fig. 3: Time responses of grid voltage.  

 

Fig. 4: Time responses of grid frequency.  

TABLE I: Nominal power of sources and energy consumption.  

 Diesel 
Generator 

Solar 
Energy 

Battery 
Energy 

Fixed 
Load 

Variable 
Load 

Nominal 
Power [MW] 

1 0,25 0,3 0,5 0,2-0,6 

 

III. COMPARED NEURAL NETWORK MODELS 

The aim of this paper was to verify the suitability of 
individual neural network models for the purpose of 
modeling dynamic processes in microgrids. For the 
comparison of neural network models, we chose the NNARX 
model with a multilayer perceptron network and two RNN 
models. The first RNN model uses an LSTM network. The 
second RNN model uses a GRU network. 

A. NNARX model 

A nonlinear autoregressive neural network with exogenous 
inputs (NNARX) is a recurrent dynamic network with 
feedback connections that close several layers of the network. 
The NNARX model is based on the linear ARX model, which 
is commonly used in time series modeling [16]. The NNARX 
model is made up of a multilayer perceptron network (MLP), 

where the inputs are the past values of the input � and output 

� of the modeled system. The neural network is trained in an 
open loop (Fig. 5a) and subsequently after learning, feedback 
is applied to the input of the network, where the past values 
of the system are replaced by the prediction of the neural 
network (Fig. 5b). 

The output of the NNARX model is defined by the 
following equation: 

����� � � 	 ��� 
 1�, ��� 
 2�, … , ��� 
 ��, …
          ��� 
 1�, ��� 
 2�, … , ��� 
 ��� �1� 

where ���� is the system output, ���� is the system input, � 

is the order of the output, � is the order of the input, and � is 
the nonlinear function approximated by the forward MLP 
network. 

 
Fig. 5: Architecture of the NNARX model with a feedforward multilayer 
perceptron network (left (a) – open loop connection, right (b) – closed loop 
connection) [16] 

B. LSTM and GRU models 

The LSTM approximation network contains an input 
sequential layer, an LSTM layer, a fully connected layer, and 
a regression layer. In the structure of the LSTM network, the 
number of hidden neurons (units) in the LSTM layer is set. 
The architecture of the LSTM network is shown in Fig. 6. 
[16]. By replacing the LSTM layer (Fig. 7) with a GRU layer, 
we get a GRU network (Fig. 8). An LSTM and GRU layers 
learn long-term dependencies between time steps in time 
series and sequence data. In the LSTM layer, the cell state, 
hidden state, and output state are updated based on the time 
series data, previous cell state, and hidden state. The layer 
controls these updates using gates. The GRU layer represents 
a simplified version of the LSTM layer. 



 

 
Fig. 6: Architecture of LSTM Recurrent Neural Network [16] 

 
Fig. 7: Architecture of the LSTM layer 

 
Fig. 8: Architecture of GRU layer 

IV. EXPERIMENTAL RESULTS 

The neural network models were trained and tested on 
simulated data from a single-node microgrid [1], where the 
input to the model is the time course of changes in power load 
and the outputs are the voltage and frequency patterns of the 
microgrid. For the voltage model, we set up sampling period 
of 0.2 s and for the frequency model 0.02 s. For the NNARX 
model, we chose for the input the number of past values n=5, 
and for the output the number of past values m=3. In the case 
of neurons in the hidden layer for the voltage, we chose 12 
and for the frequency model 25 neurons. The structure of the 
NNARX model is shown in Fig. 9. The training and testing 
of the neural models was carried out in MATLAB using the 
Deep Learning Toolbox [16]. 

 
Fig. 9: Structure of the NNARX model for voltage 

As a criterion function during the training process, we use the 
mean square error (MSE). The MSE is defined by the 
following relationship as the average sum of squares of 

deviations between the output of the model �� and the output 

of the modeled system ��. 

��� � 1
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�

�� 
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The NNARX model training process for open-loop voltage is 
shown in Fig. 10. For training epochs, we were set 250 and 
100, for the voltage model and for the frequency model, 
respectively. The MSE errors on the training and test data for 
the best trained NNARX models are presented in TABLE II. 

 
Fig. 10: NNARX model training process for voltage model 

TABLE II: MSE error values for the NNARX model 

 Train Data 
Open loop 

Test Data 
Open loop 

Train Data 
Close loop 

Test Data 
Close loop 

Voltage 3.983e-4 0.0181 1.7137 0.5997 

Frequency 3.6109e-10 5.4573e-10 5.0828e-08 7.5965e-08 

 
In the case of the LSTM and GRU models, we chose a 
network structure with two hidden layers, with a dropout 
layer in between with a probability parameter of 0.5. For the 
closed-loop model, the input was a time sequence of load 
changes. For an open loop, the system output sequence has 
been shifted by one sample. We set the number of neurons in 
the hidden layers to 200. For model training, we set 500 
training epochs and with Adam learning optimizer. 
Visualization of the LSTM model training process for closed-
loop voltage is shown in Fig. 11. 

 
Fig. 11: LSTM model training process for the voltage model. 

The MSE errors on the training and test data for the best 
LSTM and GRU models are presented in TABLE III and  

TABLE IV. The best results for the open loop were obtained 

with the NNARX model, and the comparison of this model 
with the data is shown in Fig. 12. The best results for the close 



loop were obtained with the LSTM model, and the 
comparison of this model with the data is shown in Fig. 13. 
 

TABLE III: MSE error values for the LSTM model. 

 Train Data 
Open loop  

Test Data 
Open loop 

Train Data 
Close loop 

Test Data 
Close loop 

Voltage 0.0223 0.0225 0.0178 0.0255 

Frequency 1.0477e-09 9.9472e-10 2.1658e-08 3.1230e-08 
 

TABLE IV: MSE error values for the GRU model. 

 Train Data 
Open loop  

Test Data 
Open loop 

Train Data 
Close loop 

Test Data 
Close loop 

Voltage 0.0057 0.0053 0.0095 0.1697 

Frequency 9.8401e-10 9.6988e-10 1.7097e-08 4.7946e-08 

 

 
Fig. 12: Comparison of the open-loop NNARX model. 

 
Fig. 13: Comparison of the closed-loop LSTM model. 

V. CONCLUSION 

In this paper, we compared neural network models such as 
NNARX, LSTM and GRU for modeling dynamic changes in 
smart grid. Data for training and testing of these models were 
obtained from a single-node microgrid simulation model, 
which includes solar energy and batteries in the MATLAB 
environment. These neural network models were used to 
model the dependence of voltage on load change and battery 
mode. Models are compared graphically and evaluated for 
quality. Our experiments have shown that the NNARX model 
is the most suitable for short-term prediction in an open loop. 
However, the LSTM and GRU models with feedback from the 

model output of the model are more suitable for closed-loop 
prediction, of which the LSTM model is the best. In real 
deployment, a model with the ability to make longer 
prediction is required, and especially a model that ensures 
stability. The NNARX model does not meet these 
requirements, for this reason, the LSTM model came out of 
the testing as the most suitable among tested models. 
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