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Abstract - Nowadays, measured data at 15-minute 

resolution are used in the electric power industry mainly 

for commercial balancing or in various other business and 

technical processes. However, the temporal resolution of 

these data does not allow to study in detail the variability of 

generation, the rapid changes and fluctuations of the 

generated power of photovoltaic plants caused mainly by 

the passage of clouds and fog in a given location. However, 

the statistical analysis of measured high-frequency PV 

plant production data at a second resolution allows to 

investigate and analyze power output variations down to 

the level of transients.   
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I.  INTRODUCTION 

The production of electricity from renewable energy 
sources has increased significantly over the last decade, mainly 
due to energy policy and environmental factors. In the 
conditions of the Slovak Republic, priority has been given to 
the construction of photovoltaic power plants, whose aggregate 
installed capacity reached 535 MW in 2020, according to the 
annual report of the short-term electricity market operator 
OKTE [1]. 

Renewable energy sources are generally known for their 
seasonality and fluctuations in performance on different time 
scales. Therefore, one of the biggest challenges is the technical 
management of these fluctuations. Power system analysis, 
modelling and research are in the vast majority of cases carried 
out on 15, 30 or 60 minute time scales. Therefore, this paper 
focuses on very short time resolution by analyzing high-
frequency second-by-second PV generation data. The aim is to 
represent the importance of variability in modeling and 
simulations of power system operation, while providing a 
statistical basis for second-based analyses. Understanding the 
characteristics of renewable resources using high-frequency 
data is an important aspect in the design of power systems, for 
example microgrids in islanded operation, because the high 
variability of the generated power leads to voltage fluctuations 
as a local parameter and frequency fluctuations as a global 
parameter. For this reason, microgrids are challenging not only 
to control but also to size the electrical protections and to 
maintain the dynamic and static stability of their islanded 
operation. 

In general, high-frequency fluctuations are minimally 
studied in academia, mainly because of the unavailability of 
such data and also because of the natural mutual damping of 

fluctuations that arises from the distribution of renewable 
resources in the geographic relief of the landscape. This 
distribution reduces variability, but does not eliminate it 
completely. Some research studies in the past have used 
various statistical techniques to transform from low frequency 
(common commercial measurements) to high frequency data or 
tools to generate synthetic high frequency data [2]. 

This paper presents numerical and graphical results of a 
time series analysis in the form of measured values of the 
active power output of a 16.2 kWp photovoltaic power plant 
connected to the electricity distribution network. The intention 
of the paper is to provide insight into the second order 
dynamics of PV generation and to justify its rationale in power 
system modelling and design. 

II. HIGH-FREQUENCY DATA 

The database of measured values contains high-frequency 
data in second resolution. All measured parameters are listed in 
Table 1. The time period from 1.7.2021 to 31.7.2021 of the 
total generated power P is analyzed. The day 4.7.2021, 
5.7.2021 and 6.7.2021 are omitted from the analysis due to the 
malfunction of the metering system. In total there are 28 days 
analyzed. The location is Bratislava, Slovakia. The 
measurement system produces one text file in .txt format on a 
daily basis. Data processing and analysis is performed in the 
statistical software R. The total number of measured 
parameters is 19. 

Table 1. Header of the processed .txt file 

Parameter Label 

Timestamp – 

Voltage [V] VRMS 1, VRMS 2, VRMS 3 

Total Harmonic Voltage 
Distortion [%] 

THDU 

Current [A] I1, I2, I3 

Total Harmonic Current 
Distortion [%] 

THDI 

Active power [W] P1, P2, P3, P 

Power factor [–] Cos φ1, Cos φ2, Cos φ3, Cos φ 

Electricity consumption [Wh] Ein 

Cumulative electricity 
produced [Wh] 

Eout 

 

The photovoltaic power plant contains 69 polycrystalline 
panels with an output of 235 Wp in three strings. The analysis 



is based on a comparison of the two days with the lowest and 
highest variability of production. 

III. METHODOLOGY FOR SELECTING THE TWO DAYS WITH 

THE LOWEST AND HIGHEST PRODUCTION VARIABILITY AND THEIR 

ANALYSIS 

The selection methodology is based on quantifying the 
variability of the time series of power production using the sum 
of the absolute values of the first differences according to the 
formula 

VARPout= ∑ |

86400

2

 
P(t)- P(t-∆t )

3600
|[Wh] (1) 

P(t) is the power at time t, P(t-1) is the power at time t - 1. 
Both quantities are measured in watts. The differentials are 
divided by the number of seconds in an hour so that the given 
value corresponds to the energy expressed in Wh. The value 86 
400 corresponds to the number of seconds per day. Since this is 
the first differential, the time step in this case is ∆t = 1. From 
the above formula, it follows that the higher the magnitude of 
the differentials and the more frequent the step changes, the 
higher the variability becomes. Table 2 shows the VARPout for 
the days with the lowest and highest variability of electricity 
generation.  

 
Table 2. Days with the lowest and highest production variability 

Day VARPout [Wh] 

16.7.2021 126.33 

14.7.2021 814,56 

 

For comparison, Figure 1 shows the pattern of second 
values of power production on the days with the lowest and 
days with the highest variability. A significant difference in 
production variability is evident. The timeline itself is 
expressed in hourly resolution for clarity. 

 

Figure 1.  Profile comparison of days with the lowest and highest 

variability 

Since the most commonly used data in analytical and 
simulation practice is 15-minute time resolution data, which 
involves expressing one quarter-hour with a single numerical 
value, Figure 2 is derived from Figure 1 with the time period 
from 14:00 to 14:15. Figure 2 thus provides a detailed view of 

the variability of production within a quarter-hour. The time 
axis in this case is expressed in minute resolution.  

For interest, Table 3 shows the statistical characteristics of 
the selected quarter-hour. Means, medians and standard 
deviations are given to describe the width of the distribution of 
values in the set of measured data. Conventional measurement 
systems calculate the average value within quarter-hourly 
readings at predefined time slices within a quarter-hour. The 
resulting measured value is the average of these values. Thus, 
information about the intra-quarter-hour variability is not 
retained. 

  

Figure 2.  Time zoom of the selected quarter-hour in second resolution 

Table 3. Statistical characteristics of quarter-hours for selected days 

 The day with the 
lowest variability 

The day with the 
highest variability 

Minimum 
value 

11 860 4 824 

Median  12 071 5 722 

Mean 12 051 6 398 

Maximum 
value 

12 184 15 130 

Standard 
deviation 

82,02 2 214,23 

 

It is also useful to visualize the intra-quarter-hour power 
variability using a histogram, which interprets the measured 
power values by indicating the number of measured values that 
lie within a certain range. The higher the frequency of values 
within a given range, the higher the bar in the histogram. 
Figure 3 visualizes the histogram for selected quarters. The 
figure shows a significant difference in the distribution of 
values between the high and low variability quarters. The 
quarter-hour with low variability is represented by one high bar 
and one very low bar. Hence, in this quarter-hour, the 
concentration of measured values oscillating very close to the 
mean value of 12 051 W, which is shown in Table 2. On the 
contrary, at high variability, a concentration of values is evident 
especially in the range from 5 000 to 7 500 W. Values above 7 
500 W are also present, but their frequency is low. The 
histogram also gives a rough indication of the underlying 
probability distribution of the values.  



The table also shows another indicator of variability, 
namely the percentage difference between the mean and the 
median. Both characteristics belong to measures of central 
tendency. A quarter with low variability has a percentage 
difference of 0.17%, while a quarter with high variability has 
11.81%. The difference can be explained by the non-uniform 
asymmetric distribution of the high variability values, with the 
mean, unlike the median, as an indicator of the central value 
being sensitive to outliers. 

 

Figure 3.  Visualization of measured second data in selected quarters 

by histogram 

IV. STATISTICAL ANALYSIS OF FLUCTUATIONS 

The power fluctuation ∆P∆t(t) is defined at time t for a 
given time resolution period. The parameter ∆t is the difference 
between two consecutive values of the produced power P(t). 
The values are converted to the installed power P* [3]: 

∆P∆t(t)=
[P(t)- P(t-∆t )]

P*
.100 [%] (2) 

 
The statistical analysis is performed for the measured 

values of 02.07.2021, when the largest positive and negative 
change in the differenced time series occurred simultaneously 
for ∆t = 1. Figure 4 shows the high variability and irregularity 
of the produced power. 

  

Figure 4.  Visualisation of the active power for the day 02.07.2021 

The percentage changes in performance according to (2) 
are also shown graphically in the time domain in Figure 5. 
Figure 6 shows a histogram of the percentage changes. The 
values when production was zero are removed from the 
analysis. The histogram clearly declares that the largest 
concentration of percentage changes is around zero. This fact is 
also expressed in Table 4, which shows that the maximum 
value of the negative fluctuation and therefore the decrease in 
output was more than 50% between two consecutive seconds. 
The increase in this case was 31.49%. 

 

Figure 5.  Visualisation of percentage changes in power on 02.07.2021 

in the time domain 

 

Figure 6.  Visualisation of percentage changes in power on 02.07.2021 

using histogram 

Table 4. Statistical characteristics of fluctuations expressed as a 

percentage 

 ∆P∆t[%] 

Minimum value -50.50 

Median  0.00 

Mean 0.00 

Maximum value 31.49 

Standard deviation 1.59 



Since the percentage of fluctuations is burdened by a 
dominant number of very low values oscillating around zero, 
all values falling in the interval (-5%, 5%) are removed for 
further analysis, thus creating two data sets with positive and 
negative values. The statistical characteristics of these data sets 
are expressed in Table 5. 

Table 5. Statistical characteristics of the two datasets of 
fluctuations expressed as a percentage 

 (min(∆P∆t) ,- 5 %)[%] (5 %, max(∆P∆t))[%] 

Minimum 
value 

-50.50 5.01 

Median  -8.62 8.34 

Mean -11.22 10.25 

Maximum 
value 

-5.02 31.46 

Standard 
deviation 

7.13 5.54 

 

V. STATISTICAL ANALYSIS OF THE RATE OF DECLINE AND 

INCREASE IN PERFORMANCE 

The above analyses show that a step change in power drop 
can reach up to 50% of the installed power within one second, 
which in the case of microgrids or other isolated arrays with 
high PV penetration can have a negative impact on the quality 
of the delivered electricity. 

From a power management perspective, it is therefore 
important to quantify the rate of decline and increase in power 
output given in MW/min in common practice, especially for 
distribution and transmission system operators. Since second 
values are available, this chapter works with W/s.  The 
calculation is made according to [4]: 

 

RRATEPV=
P(t)- P(t-∆t )

∆t
 [W/s](3) 

 

Where RRATEPV is the rate of change of power, P(t) is the 
power over time and ∆t is the time step. The analysis is 
performed for a moving window with time difference ∆t = 1, 2, 
3 and 4, corresponding to time window widths of 2, 3, 4 and 5 
seconds, respectively. Table 6 and Table 7 show the statistical 
characteristics for the power decrease and power increase, 
respectively. The values are given in W/s.  

The tables show that as the width of the window used 
increases, the absolute value of the characteristics decreases 
and a smoothing effect occurs. 

Both datasets for all time differences were tested for 
normality by the Shapiro-Wilk test. In practice, it is often 
assumed that the data come from a normal distribution. 
However, testing rejected the hypothesis that the data sets fit a 
normal distribution [5]. Hence, it is more appropriate to 
consider the median as a measure of central tendency. The 
tables also show a slight difference between the absolute values 
of the medians for the decrease and increase in power. The 
values suggest the conclusion that the decline in performance is 
generally faster. For example, for ∆t = 2, the median decline is 
10.13% faster than the increase. Based on this fact, the 
hypothesis was formulated that the difference in the rate of 
decline and increase is greater than 0 and hence statistically 

significant. Since the data did not come from a normal 
distribution, the Wilcoxon test was chosen for testing [6].  The 
test decides based on the calculated p-value whether the 
median difference between the two data sets is statistically 
significant or not. The results from the testing are presented in 
Table 8. In general, if the p-value is greater than 0.05, the 
hypothesis that the difference is not statistically significant is 
accepted. If the value is less, the alternative hypothesis is 
accepted and the difference of the two medians is statistically 
significant. 

Table 6. Statistical characteristics of the decline in active power 

 ∆t = 1 ∆t = 2 ∆t = 3 ∆t = 4 

Minimum 
value 

-8 182 -4 934 -3 635 -2 771 

Median  -1 396 -1 413 -1 321 -1 272 

Mean 1 818 -1 673 -1 506 -1 409 

Maximum 
value 

-813 -812 -810 -811 

Standard 
deviation 

1 155 847 641 497 

 

Table 7. Statistical characteristics of the increase in active power 

 ∆t = 1 ∆t = 2 ∆t = 3 ∆t = 4 

Minimum 
value 

812 813 812 811 

Median  1 351 1 283 1 205 1 147 

Mean 1 660 1 493 1 368 1 268 

Maximum 
value 

5 101 4 520 3 548 2 844 

Standard 
deviation 

898 677 517 405 

 

Table 8. Evaluation of testing the statistical hypothesis of the difference 

in medians 

time step p-value conclusion 

∆t = 1 0.189 
The difference is 
not statistically 

significant 

∆t = 2 0.005 
The difference is 

statistically 
significant 

∆t = 3 0.014 
The difference is 
not statistically 

significant 

∆t = 4 0.000 
The difference is 

statistically 
significant 

 

VI. CONCLUSION 

The analyses show a high degree of variability in the power 
produced by PV plants, which needs to be considered when 
designing microgrid control and understanding the dynamics of 



renewable energy sources. The maximum decrease between 
two consecutive seconds reached a magnitude of -50.50 %, 
which is 8 181 W, while the installed capacity is 16 200 W. 
The maximum increase in power between two consecutive 
seconds reached 31.49 %, which is 5 101 W.  

Based on the median differences in the rate of decline and 
increase in power for different time windows, the hypothesis 
was formulated that there is a statistically significant difference 
between the rate and decline in generation. This was 
demonstrated at ∆t = 2 and ∆t = 4. Numerically, the rate of 
decline is generally slightly greater than the rate of power 
production ramp-up after the clouds depart. 
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