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Abstract—The paper presents various strategies for the iden-
tification of the active power frequency response with respect to
a measure used to evaluate the oscillations of active power in
power microgrids. First, the estimation based on the voltage step
response data is considered. Alternatively, the data corresponding
to chosen voltage disturbances are used for such estimation.
A specific dedicated method for frequency response estimation is
designed for each type of experiment and experiment conditions.
The synchronous generator of a cogeneration unit, which is
a part of a power microgrid, is used within the case study
presented in the paper. The simulation results show the usability
of the estimated power frequency response in a similar manner
as the conventional measurement based on the series of active
experiments.

Index Terms—frequency response, Fourier transform, passive
experiment, step response, active power, microgrid, smart energy

I. INTRODUCTION

Increasing environmental awareness to reduce the carbon
footprint of humanity has put power systems under intense
pressure [1]. Renewable energy is being integrated into the
distribution level, and conventional power grids are evolving
towards smart grids. In such transition, the concept of micro-
grid plays a crucial role [2].

One of the main concerns regarding the broad application
of microgrids is stability and quality [3]. Different approaches
have been developed to enhance the stability of microgrids so
far [3, 4, 5]. For a more comprehensive literature review in
this field, see [2, 6] and the references therein.

In general, the stability performance of microgrids is often
assessed from the damping of the local mode, i.e. the generator
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Program Integrated Infrastructure for the project: International Center of
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nication Technologies and Systems - II. stage, ITMS code: 313021W404,
co-financed by the European Regional Development Fund.

swinging against the rest of the microgrid system [7]. The
microgrid has to be designed to provide acceptable perfor-
mance under a wide range of system conditions [8]. Thus, the
ability to precisely determine the frequency response of the
generator in a microgrid is crucial for both controller design
and performance evaluation [2].

It is often not technically feasible or economically ad-
missible to perform regular experiments to obtain a gen-
erator’s frequency response in the microgrid. To this end,
the paper proposes novel strategies for frequency response
estimation based on data from step response experiments,
using parametric and non-parametric model identification, and
an approach based on the voltage disturbance data measured
during a passive experiment.

II. PRELIMINARIES AND PROBLEM FORMULATION

Assume the following continuous-time transfer function
model of the generated active power to be modelled during
the active experiment:

Fa(s) =
∆Peo(s)

∆Vref (s)
=

Ba(s)

Aa(s)
(1)

where ∆Peo(s) is the Laplace transform of the deviation of
the active power from its steady-state value and ∆Vref (s)
represents the deviation of the reference stator voltage from the
corresponding nominal value (usually 1 p.u.). This experiment
allows to excite the system with a proper input signal to
measure the system response and then use it to estimate the
frequency response. Typically, two distinct types of signal can
be applied within the active experiments, namely, the sine
signal and the step signal.

Likewise, a transfer function model Fp(s) can be defined
for the passive experiment. The model input stands for the
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Fig. 1. Frequency response obtained by the means of the regular experiment
and simulating the same procedure as in the case of actual measurement.

stator voltage, which is typically subject to disturbances, so
the input is not independent:

Fp(s) =
∆Peo(s)

∆V (s)
=

Bp(s)

Ap(s)
(2)

where ∆V (s) is the Laplace image of the deviation of the
stator voltage from the corresponding steady-state value.

The numerator B(s) and the denominator A(s) polynomials
of models (1), (2) are in the form:

B(s) = b0 + b1s+ . . .+ bnB
snB (3)

A(s) = 1 + a1s+ . . .+ anA
snA (4)

Where nB is the number of model zeros and nA is the number
of model poles (model order). The choice of nB and nA will
be the subject of further investigation.

III. CASE STUDY

We will examine the system frequency response for
a finite set of N frequencies forming the vector ω̄ =[
ω1 ω2 ω3 · · · ωN

]T
. The corresponding vector of estimated

magnitudes of the system frequency response F (jω) can be
defined as follows:

|F̂ | =
[
|F̂ (jω1)| |F̂ (jω2)| |F̂ (jω2)| · · · |F̂ (jωN )|

]T
(5)

First, an active experiment is considered to obtain frequency
response, i.e. direct measurement of the oscillation amplitudes
as a response to feeding the system input with a harmonic
signal of various frequencies. For each frequency, the ex-
citation signal u(t) with offset u0 and amplitude ai holds
u(t)=u0+ai sin(ωit).

In this case study, the frequency response plotted in Figure 1
represents the correct and reference result to be compared with
other proposed methods. These reference measurements form
the vector |F | as follows:

|F | =
[
|F (jω1)| |F (jω2)| |F (jω2)| · · · |F (jωN )|

]T
(6)

The results were obtained by means of simulation, so the
same procedure is performed as in the case of the actual
experiment. However, such a procedure may not be feasible
for the generators used in the smart microgrids applications.

Another example of an active experiment using the refer-
ence voltage step response is also presented in section IV.

The simulation model of power microgrid considered in this
work consists mainly of a synchronous generator (nominal

0.5 1.0 1.5 2.0 2.5 3.0 [sec]

0.000
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[p.u.] Active Power Step Response

0.5 1.0 1.5 2.0 2.5 3.0 [sec]
0.000
0.005
0.010
[p.u.] Voltage Reference Step

Fig. 2. Voltage response step data (deviations from steady-state).

power 75 [kVA], 400 [V]), which is part of a cogeneration
unit, a three-phase transformer that allows connection to
a distribution network (22 [kV]) and the asynchronous motors
posing main loads in the microgrid.

IV. ESTIMATION BASED ON THE VOLTAGE STEP
RESPONSE

The simplest, yet full-featured form of an active experiment
is the step response. In contrast to the active frequency
response experiment, where the input signal is harmonic and
must be carried out for all examined frequencies separately,
the step response experiment is evaluated only once, while the
measured output response should contain the full information
about the system frequency response.

An example of the voltage response step data is presented
in Figure 2, where the deviation of the active power from
its steady-state value and the deviation of the reference stator
voltage from the corresponding nominal value are shown.

A. Parametric Model Identification

This strategy represents an interesting way to indirectly
estimate the frequency response by the means of traditional
parametric system identification methods based on the regular
time domain data and analytically expressing the frequency
response of thus identified transfer function model.

The joint vector of estimated parameters of model (2) is
θ̂=

[
b0 b1 · · · bnB

a1 a2 · · · anA

]T
. The following quadratic

cost function is typically minimized to estimate the parameter
vector θ̂:

J(θ̂) =

Ns∑
i=0

[
ŷ(i, θ̂)− y(i)

]2
(7)

where y(t) stands for the system output measured during the
step response experiment, ŷ(t) is the simulated model output
and Ns is the number of samples. The nonlinear least-squares
problem (7) can be solved numerically.

In order to derive the frequency response F (jω) of the
identified parametric model (2), the Laplace operator s has to
be replaced by jω and the magnitude |F (jω)| can be expressed
as:

|F (jω)| =
∣∣∣∣B(jω)

A(jω)

∣∣∣∣ (8)
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TABLE I
SIMPLE FIT METRIC (SFM) RESULTS [%]

nA/nB 0 1 2 3 4 5

2 -95.069 69.589 83.465 - - -
3 -99.422 88.030 92.390 94.924 - -
4 -42.512 -62.017 95.099 95.102 95.095 -
5 -35.734 31.079 95.104 95.002 95.017 95.024

2 4 6 8 10 [Hz]
0.0

0.5

1.0

1.5

2.0

2.5
Frequency response [dimensionless gain]

reference
est. (parametric)
SFM = 95.104 %
est. (non-parametric)
SFM = 93.914 %

Fig. 3. Graphical comparison of the reference with the frequency response ob-
tained using the parametric model (transfer function) and the non-parametric
approach (spectral analysis).

The main advantage of the proposed approach is that the
single step response experiment is sufficient to fully estimate
the frequency response without the need to carry out multiple
experiments for each of the investigated frequencies separately.

The accuracy of the estimated frequency responses was
quantified by the Simple fit metric (SFM), which is defined as
follows:

SFM =

1−

√(
|F | − |F̂ |

)T (
|F | − |F̂ |

)
√(

|F | − ¯|F |
)T (

|F | − ¯|F |
)
× 100% (9)

where |F | is the vector of magnitudes of the measured
frequency responses and |F̂ | is the vector of estimated mag-
nitudes of the frequency responses.

The results of Simple fit metric evaluated for different
combinations of model orders nB and nA are summarized
in Table I. It can be concluded that the best fit value
SFM = 95.104 [%] corresponds to model orders nA = 5 and
nB = 2. The graphical comparison of the estimated frequency
responses with the reference frequency response can be seen
in Figure 3.

B. Non-parametric Model Identification

Assume the frequency transfer function of the model (1) in
the following form:

F (jω) =
y(jω)

u(jω)
(10)

where y(jω) represents the Fourier transform of the system
output y(t) and u(jω) is the Fourier transform of the input
u(t).

The Fourier transform operator F {f(t)} is given by the
following integral transform applied to a general continuous
function f(t):

F {f(t)} =

∫ ∞

−∞
f(t) cos(ωt)dt− j

∫ ∞

−∞
f(t) sin(ωt)dt

(11)
The real part of the complex function F {f(t)} can be seen as
the correlation function with the cosine whereas, the imaginary
part can be interpreted as the correlation with the sine function.

These frequency-dependent correlation functions can be
separated as:

Rfc(ω) =

∫ ∞

−∞
f(t) cos(ωt)dt (12)

Rfs(ω) =

∫ ∞

−∞
f(t) sin(ωt)dt (13)

Accordingly, the frequency response (10) can be written as:

F (jω) =
Ryc(ω)− jRys(ω)

Ruc(ω)− jRus(ω)
(14)

For data-based estimation, the integrals of the correlation
functions Ryc(ωk), Rys(ωk) defined by (12), (13) have to be
solved as finite summations assuming that the infinitesimal
element dt will be replaced by the sample time Ts > 0 and
the truncated experiment duration tf :

R̂fc(ωk) = Ts

tf
Ts∑
i=0

f(Tsi) cos(ωkTsi) (15)

R̂fs(ωk) = Ts

tf
Ts∑
i=0

f(Tsi) sin(ωkTsi) (16)

The input excitation signal in this experiment is the Heavi-
side step function with the step size as:

u(t) =

{
−as

2 t < 0

+as

2 t > 0
(17)

The Fourier transform of the input signal F {u(t)} can be
derived analytically for the above step function. Substituting
u(t) from equation (17) to (12) and (13) yields the following
correlation functions:

Ruc(ω) = −as
2

∫ 0

−∞
cos(ωt)dt+

as
2

∫ ∞

0

cos(ωt)dt

= −as
2

1

ω
[sin(t)]

0
−∞ +

as
2

1

ω
[sin(t)]

∞
0 = 0

(18)

Rus(ω) = −as
2

∫ 0

−∞
sin(ωt)dt+

as
2

∫ ∞

0

sin(ωt)dt

=
as
2

1

ω
[cos(t)]

0
−∞ − as

2

1

ω
[cos(t)]

∞
0 =

as
ω

(19)

The resulting spectrum of the in input signal is u(jω) = −j as

ω .
The above equation implies that the step signal (17) comprises
the whole frequency spectrum, while its magnitude is decreas-
ing with frequency. The estimate of the frequency transfer
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Fig. 4. Graphical comparison of the estimated frequency responses for the
passive experiment.

function (14) can be derived by assuming the step input signal
(17) with the frequency spectrum u(jω).

F (jω) = ω
R̂ys(ω) + jR̂yc(ω)

as
(20)

The resulting estimated frequency response is shown in
Figure 3 with SFM = 93.914 [%].

V. ESTIMATION BASED ON THE VOLTAGE DISTURBANCE

The passive experiments in the form of voltage disturbances
are also considered, while the assumed data correspond to a
regular microgrid operation of a synchronous generator. The
voltage disturbance no. 1 is caused by a small step-vise change
in voltage reference signal (set-point change). The disturbance
no. 2 is caused by the asynchronous motor, which is connected
to the microgrid. The step-vise change of the load torque
causes the second disturbance.

Recall that the transfer function model considered for the
passive experiments was defined in (1). To estimate the
frequency response, we assume an arbitrary and independent
input excitation signal u(t). The general frequency response
(14) is used, while the correlation functions can be replaced
with their estimates R̂yc(ωk), R̂ys(ωk) and R̂uc(ωk), R̂us(ωk)
calculated according to (15) and (16).

Multiplying the numerator and the denominator of F̂ (jωk)
from (14) by the denominator complex conjugate yields:

ℜ
{
F̂ (jωk)

}
=

R̂yc(ωk)R̂uc(ωk) + R̂ys(ωk)R̂us(ωk)

R̂2
uc(ωk) + R̂2

us(ωk)
(21)

ℑ
{
F̂ (jωk)

}
=

R̂yc(ωk)R̂us(ωk)− R̂ys(ωk)R̂uc(ωk)

R̂2
uc(ωk) + R̂2

us(ωk)
(22)

The estimation results based on the voltage disturbance
data are plotted in Figure 4. A graphical comparison shows
that a reasonable estimate of the frequency response can
be obtained even when the voltage itself, not the voltage
reference, is considered as the input signal.

VI. CONCLUSION AND FUTURE WORK

The paper proposed methods to estimate the frequency re-
sponse of the generator’s active power based on the data from
the step response experiment and even from the fully passive

experiment data obtained under the operating conditions of the
microgrid. The first method relies on the parametric transfer
function model identification based on the time domain data
and the least squares method. On the other hand, the second
approach utilizes the Fourier transform and spectral analysis of
the input and output signals to estimate the frequency response.
The simulation results showed that both proposed methods
are capable of providing estimates comparable to traditional
measurements, while the need to repeatedly carry out the
active experiment for each frequency separately could be fully
avoided this way.

The results presented in this paper create a basis for our
future work primarily aimed at the passive experiment of
the voltage disturbance data. Such data are, in principle,
available during the nominal operation of the power microgrid
without the need to carry out specialized experiments. In
addition, by estimating the frequency response of the active
power, the stability and performance of power microgrids can
be improved over a wide range of operating conditions by
employing oscillation measures in a similar manner as in larger
power grids.

REFERENCES

[1] Hassan Bevrani. Frequency Control in Microgrids, pages
319–347. Springer International Publishing, Cham, 2014.

[2] Sahil Mehta and Prasenjit Basak. A comprehensive
review on control techniques for stability improvement
in microgrids. International Transactions on Electrical
Energy Systems, 31(4):e12822, 2021.

[3] Ke Guo, Yang Qi, Jiale Yu, David Frey, and Yi Tang. A
converter-based power system stabilizer for stability en-
hancement of droop-controlled islanded microgrids. IEEE
Transactions on Smart Grid, 12(6):4616–4626, Nov 2021.

[4] Mohammad Mahmoudian Esfahani, Hany F. Habib, and
Osama A. Mohammed. Microgrid stability improvement
using a fuzzy-based pss design for virtual synchronous
generator. In SoutheastCon 2018, pages 1–5, April 2018.

[5] Qi Geng, Huadong Sun, Xing Zhang, and Xiaoxin Zhou.
Angle stability enhancement of off-grid microgrids based
on model predictive control. International Journal of
Electrical Power & Energy Systems, 140:108046, 2022.

[6] Tania B. Lopez-Garcia, Alberto Coronado-Mendoza, and
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