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ABSTRACT
One of the great challenges to control theory is to design controllers for the increasing size of uncer-
tain large-scale systems. Such problems arise inmany real-word applications and the systems are too
large and too complex to be centralised controlled. For these reasons, the complex system is split
into several interconnected subsystems and it is controlled in a decentralized fashion. In this article,
a novel, original approach to the control of large-scale uncertain linear discrete-time systems by a
decentralised controller is presented. In the existing references, such systems are divided into two
groups: complex systems with strong or weak interactions. However, the new proposed approach
depends on whether the system is stable or not. The design procedure consists of two steps: In the
first step, the dynamic properties of the closed-loop decentralised controlled subsystems are deter-
mined in such a way that the stability, robustness, and performance of the closed-loop subsystems
and the entire system are guaranteed. In the second step, a decentralised control algorithmmust be
designed that ensures the required properties of the subsystems that have been obtained in the first
step. The advantage of this approach is that the decentralized controller design is performed on the
subsystem level.
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1. Introduction

Stability analysis of large-scale systems (LSS) is an
essential topic in control system theory; see Sil-
jak (1978) and the references therein. The notion of
system complexity indicates the fundamental charac-
teristics of a complex system, including multidimen-
sionality, uncertainty, and the impossibility of being
centralised controlled. Direct analysis of the stability
of such systems is generally hampered by the com-
plexity of the overall system. This is why the prob-
lems of analysis and controller synthesis for complex
systems are divided into independent/almost indepen-
dent subproblems and controlled in this way by an
algorithm with information constraints-decentralised
control. Decentralised controller design procedures
have been developed since the 1970s, Bakule (2008),
Y. H. Chen (1989), Davison and Chang (1987), Davi-
son et al. (2020), Gielen and Lazar (2015), Ikeda
et al. (1981), Siljak (1978) and Wang and Davi-
son (1973). Analysing the stability of each smaller
resulting subsystem separately, that is, by neglecting
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interconnections, is a tractable but highly conservative
approach (Siljak, 1978).

In the last three decades, the control of LSS
using decentralised controllers has been successful.
Decentralised controller design procedures have been
developed in the frequency and time domains. In
the frequency domain, the most interesting results
belong to independent design (Hovd & Skoges-
tad, 1993a), sequential design (Hovd & Skoges-
tad, 1993b), and the method of equivalent subsystem
(Kozáková et al., 2019).

The decentralised controller design methods
obtained in the time domain could be divided into
the following three groups: The methods using the
aggregation matrix approach, Siljak (1978), for linear
and nonlinear systems, the vector Lyapunov function
approach, Matrosov (1962), and great progress has
been made using the LMI-BMI approach. The sur-
vey of decentralised controller design procedures for
continuous-time and discrete-time systems may be
found in the excellent survey (Bakule, 2008) and the
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book (Davison et al., 2020). Numerous decentralised
design methods developed, to date, fall into the six
groups mentioned above. The disadvantage of these
methods is when designing a decentralised controller,
it is usually necessary to use a full mathematical model
of the complex system.Decentralised controller design
procedures on the subsystem level for continuous-
time system are described in Kozáková et al. (2019)
and Veselý (2021) and for discrete-time systems in
Kozáková et al. (2019). All decentralised controller
design procedures belong to the class of ‘highly conser-
vative approach’. These methods provide the decen-
tralised controller design procedure using the prop-
erties of a complex system, such as strong or weak
interactions. The above properties do not play any role
in this paper. Conditions for decentralised controlla-
bility, observability and the decentralised stabilisation
of the complex systems are given in Naiqi et al. (1988)
and the references therein. Decentralised control for
discrete-time linear systems in the frequency domain
is presented in Kozáková et al. (2019), and for the
time domain in Gielen and Lazar (2015), Rosinová
and Halická (1994), Xu et al. (2019) and Yan and Bit-
mead (1992) and the references therein.

This paper aims to derive a new approach to the
design of a robust decentralised controller for linear
uncertain discrete-time systems. The main advantage
of the present method is that decentralised controllers
are designed at the subsystem level without consid-
ering the interaction links. The presented method is
implemented in two steps. In the first step, one deter-
mines whether a complex uncertain system without
a controller is stable or not. This calculation deter-
mines the required properties of the subsystems that
guarantee the stability, robustness, and dynamic prop-
erties of the subsystems as well as of the closed-loop
complex system. In the second step, the parameters
of the decentralised controller will be calculated at
the subsystem level to guarantee the required dynamic
properties of the subsystems obtained in the first step.
The results obtained in this paper present a new prin-
cipal way and theory (see Conclusion) of the design of
decentralised controllers, which could be split into two
directions:

(1) decentralised controller design for a stable com-
plex system,

(2) decentralised controller design for an unstable
complex system.

The idea of a two-step procedure was already out-
lined in Veselý (2021) for continuous-time systems.
The present article elaborates on the previous one and
presents a new necessary and sufficient condition for
the decentralised controller for the complex system,
then a new robust stability condition for the complex
system, and also a new specification of the equivalent
subsystem when designing a decentralised controller
for an unstable complex system.

The organisation of the paper is as follows. Section 2
provides preliminary results and a formulation of the
problem. Section 3 introduces an equivalent subsystem
and its use to the design of decentralised controllers for
linear uncertain discrete-time LSS. Section 4 presents
two examples showing the effectiveness of the pro-
posed method. In Conclusion, Section 5, the advan-
tages of the proposed method are presented.

In the sequal, the following notation will be
adopted. Given a symmetric matrix P = PT ∈ Rn×n,
the inequality P>0, (P<0) denotes the positive (neg-
ative) definiteness of the matrix. Furthermore, In, 0n
denotes the identity, zero matrices of dimension n.

2. Preliminaries and problem formulation

2.1. System description

We are given a large-scale uncertain discrete-time
invariant system of the form

x(t + 1) = A(ξ)x(t) + B(ξ)u(t),

y(t) = Cx(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, con-
trol input, and controlled output, respectively. The
matrices

(A(ξ),B(ξ)) =
N∑
i=1

(Ai,Bi)ξi (2)

belong to a polytopic uncertainty domain with
N-vertices and constant or time varying-uncertainties
that belong to the set ξ(t) ∈ �ξ

�ξ =
{

ξi(t) ≥ 0, i = 1, 2, . . . ,N,
N∑
i=1

ξi(t) = 1

}

(3)
and

N∑
i=1

(ξi(t) − ξi(t − 1)) = 0.
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The matrices Ai,Bi, and C are with constant entries.
We assume that the matrices Bi, C, i = 1, 2, . . . ,N
have a decentralised structure, X. B. Chen and
Stankovic (2005), namely

Ai =

⎡
⎢⎢⎢⎣
Ai11 . . . Ai1m
Ai21 . . . Ai2m
... . . . ...

Aim1 . . . Aimm

⎤
⎥⎥⎥⎦ ∈ Rn×n,

Bi = blockdiag[Bi1 . . .Bim] ∈ Rn×m,

C = blockdiag[C1 . . .Cm] ∈ Rl×n. (4)

We further assume that the complex system (1)
is centralised controllable, and observable, Gong
and Aldeen (1992), Seraji (2007) and Wang and Davi-
son (1973).

The system (1) can be formally decomposed into
subsystems in different ways. In this article, the divi-
sion of the above matrices into sub-matrices reflects
the inherent properties of the complex system. In the
following, we will use the non-overlapping structure
(X. B. Chen & Stankovic, 2005).

2.2. Preliminaries and problem formulation

The system (1) is asymptotically stable ifA(ξ) is Schur
stable for all ξi, i = 1, 2, . . . ,N, that is, the eigenvalues
of A(ξ) are smaller than one in modulus.

Lemma 2.1 readily follows the Lyapunov stability
theory (Vassiliki et al., 1988).

Lemma 2.1: The sum of two discrete-time matrices
G + H ∈ Rn×n is Schur stable if and only if a positive
definite Lyapunov matrix P>0 exists, such that

(G + H)TP(G + H) − P < 0 (5)

holds.

Proof: The linear discrete-time system x(t + 1) =
Lx(t) is asymptotically stable if and only if a positive
definite matrix P>0 exists such that the Lyapunov
inequality LTPL − L < 0 holds, Vassiliki et al. (1988).
Putting L = G+H proves the lemma. �

Definition 2.2: Let E = {eij}n×n be the structured
perturbation matrix of the system (1) where

• eij = 1 if there is an interaction connection between
the subsystems i and j,

• eij = 0 if there is no connection between the sub-
systems i and j.

To reflect a weaker or varying interaction between
the subsystems i and j, one may put the value of eij ∈<

0, 1 >.

Definition 2.3 (Siljak, 1978): A complex system (1) is
connective stable if and only if it is asymptotically, for
all possible entries ei,j of the matrix E(eij).

In this article, the problem is to design the decen-
tralised controller for each non-overlapping jth, j =
1, 2, . . . ,m subsystem such that the decentralised con-
troller guarantees the closed-loop stability, robust-
ness, and performance of each subsystem, as well as
the connective stability of the complex system with
the designer-defined performance. The controller can
be, for instance, a PI or PID controller. The control
algorithm for a PID controller is as follows:

u(t)j = kpjCjx(t)j + kijCj

∞∑
to

x(t)j + kdjCjδx(t)j,

(6)
where

j = 1, 2, . . . ,m; δx(t)j = x(t)j − x(t − 1)j.

3. Robust decentralised controller design

3.1. Main theoretical results

In this section, we will focus our attention on find-
ing such dynamic properties of the block diagonal
matrixAd(ξ) of the complex system that ensure robust
stability and performance of all subsystems, as well
as of the complex dynamic system. We introduce an
auxiliary block diagonal matrix: equivalent subsys-
tem. The equivalent subsystem serves in the second
step of the decentralised controller design procedure
to design a decentralised PI/PID (or any) controller
that will ensure the robust stability and performance
of the block diagonal matrix with the decentralised
controller Ad(ξ) + Bd(ξ) ∗ DecController and of the
entire complex system. Assume that the complex sys-
tem (1) is convex with respect to ξ . Let us split the
system to the ith vertex of the polytope i = 1, 2, . . . ,N
having the following form

x(t + 1) = (Adi + Ami)x(t) + Biu(t),
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y(t) = Cx(t), (7)

where i = 1, 2, . . . ,N; Adi is the block diagonal part of
the matrixAi withm diagonal submatrices andAmi =
Ai − Adi is the off-diagonal part of the system (1).

Lemma 3.1 (Gahinet et al., 1996): Consider the
quadratic function

f (v) = (vAdi + Ami)
TPi(vAdi + Ami) − Pi

and assume that f (v) is convex, that is,

δ2f (v)
δ2v

≥ 0.

Then f (v) is negative in the rectangle v ∈< 0, vb >, if
and only if it takes negative values at the corners, that is,
if and only if f (v) < 0 for v = 0 or v = vb.

Theorem 3.2: Let two discrete-time system matrices
Adi,Ami with constant entries and a constant v belong-
ing to the interval < 0, vb > be given. The sum Gi =
vAdi + Ami is Schur stable for any such v if and only if
a positive definitematrix Pi exists such that the following
inequality holds:

(vAdi + Ami)
TPi(vAdi + Ami) − Pi < 0. (8)

Proof: Since f (v) = (vAdi + Ami)
TPi(vAdi + Ami)

− Pi is convex in v by Lemma 3.1, then Lemma 3.1
implies that f (v) is negative definite if and only if it is so
at the corners, that is, for v = 0 and v = vb. For v = 0,
we have from (8) that

f (0) = AmT
i PiAmi − Pi < 0. (9)

Condition (9) is a necessary and sufficient condi-
tion for the existence of a decentralised controller for
the system given by the matrix Adi + Ami. If matrix
Ami is asymptotically stable, then due to Lemma 3.1,
there exists the solution to variable v. For v = vb, we
have (8), which proves the theorem. �

For an uncertain polytopic system (1) with N ver-
tices, the robust stability condition of the complex
system with matrices Gi, i = 1, 2, . . . ,N, Veselý and
Rosinová (2013) is as follows.

Theorem 3.3 (Peaucelle et al., 2000; Veselý & Rosi-
nová, 2013): Let us have two discrete-time matri-
ces Adi, Ami, i = 1, 2, . . . ,N with constant entries

and a positive constant v ≥ 0. The uncertain poly-
topic system (1) with matrices Gi = vAdi + Ami i =
1, 2, . . . ,N is asymptotically stable for some positive
coefficient v = vb>0 if and only if there exist matrices
H,U ∈ Rn×n and positive definite matrices Pi > 0, i =
1, 2, . . . ,N such that the following inequality holds for
all i = 1, 2, . . . ,N[−Pi + GT

i H
T + HGi −H + GT

i U
−HT + UTGi Pi − (UT + U)

]
< 0. (10)

Remark 3.1: Note that if scalar v covers all sub-
systems, the value v = vb obtained by solving (8)
or (10) may be conservative (worst case). To decrease
the conservatives one needs to use instead of a
scalar v the diagonal matrix v as follows v =
blockdiag{I1v1, I2v2, . . . , Imvm}.

FromTheorems 3.2 and 3.3, the followingCorollary
readily follows.

Corollary 3.4: Let a value of v = vb>0 be obtained
due to the solution of (8) or (10). The complex system
is asymptotically stable for some v ≥ 0 if v ∈< 0, vb >

holds.

The two theorems serve to determine a value of v
to check the stability of the complex system (1). The
inequality (10) belongs to the class of BMI. If the com-
plex system is of high order the elimination lemma and
the linearisation approach should be used to obtain an
LMI formulation (Veselý et al., 2011). Based on the
calculated value of v = vb>0 from (8) or for a poly-
topic system from (10), there are two possible paths to
design a decentralised controller.

• The first one: if vb ≥ 1, the LSS is stable without
decentralised controllers. For ensuring the stabil-
ity, robustness and performance of the subsystems
and the LSS, any decentralised controller may be
designed on the subsystem level that satisfies the
following condition:

|λk(Ad(i, j) + B(i, j) ∗ DecControllerj)|
≤ |λk(Ad(i, j) ∗ vb)|,
i = 1, 2, . . . ,N, j = 1, 2, . . . ,m,

k = 1, 2, . . . , ds(i, j) ≤ n, (11)

that is, the absolute values of closed-loop (i, j)
subsystems dominant eigenvalues are less than or
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equal to the absolute values of open-loop modified
dominant subsystem eigenvalues. The number of
dominant (i, j) subsystem eigenvalues ds(i, j) which
are to satisfy (11), is determined for the specific
decentralised controller structure and parameters
experimentally, see examples, obviously ds(i, j) =
1, 2. Following Siljak (1978), the stability of a com-
plex linear or nonlinear system can be determined
using an aggregation matrix approach. If the com-
plex system is stable and the absolute values of the
diagonal elements of the aggregation matrix are not
increased by the decentralised controllers, the sta-
bility of the complex system will not be affected.
Thus, the results obtained in this paper agree with
the results achieved using the aggregation matrix
approach.

• The second possibility, if vb<1, the LSS is unsta-
ble.The closed-loop stability of LSS is ensured if the
robust decentralised controller is designed in such
a way that the following condition holds for the
subsystems dominant eigenvalues:

|λk(Ad(i, j) + B(i, j) ∗ DecControllerj)|
≤ |λk(vbAd(i, j))|,
i = 1, 2, . . . ,N, j = 1, 2, . . . ,m,

k = 1, 2, . . . , ds(i, j). (12)

Theorem 3.5: Assume an ideal case, when the follow-
ing equality holds for the i th vertex:

|λk(Adi + Bi ∗ DecControllers)| = |λk(vbAdi))|,
i = 1, 2, . . . ,N, k = 1, 2, . . . , ds(i).

Then the robust stability boundary of the complex sys-
tem is given by the circle of radius rsb as follows:

rsb = vb
(
min
i

(
max
k

|λk(Adi)|
))

(13)

Proof: The result of (13) is obtained from inequal-
ity (12) for the dominant eigenvalue. �

Remark 3.2: Theorem 3.5 serves as a sufficient robust
stability condition for the LSS and provides the basis
for the definition of an equivalent subsystem. For a sta-
ble complex system the absolute value of all subsystems
eigenvalues need to be less than or equal to rsb.

Remark 3.3: When the positive coefficient vb is
known the minimal value of the degree of stability αd

for all subsystems j = 1, 2, . . . ,m can be calculated as
follows:

αd = 1 − vb2.

The following condition should hold for a stable LSS

�Vj(x) ≤ −αdVj(x), j = 1, 2, . . . ,m,

whereVj(x), j = 1, 2, . . . ,m, is the Lyapunov function
of the closed-loop jth subsystem.

3.2. Equivalent subsystems

Equivalent subsystems have been introduced for the
unstable LSS, when vb<1. The equivalent subsystems
serve in the second step to design a decentralised
PI/PID (or any) controller that will ensure the sta-
bility, robustness, and performance of a block diag-
onal matrix with decentralised controller, Ad(ξ) +
B(ξ) ∗ DecController and the complex system. Equiv-
alent subsystems transform the subsystems matrices
Ad(i, j) so that the dominant eigenvalues of the corre-
sponding subsystems increase by a specified value such
that the designed decentralised controller for equiva-
lent subsystem will guarantee simultaneously the sta-
bility, robustness, and performance of the subsystems
and the complex systems. One approach to define the
equivalent subsystems is as follows (see examples for
two other approaches):

Ade(i, j) = U ∗ V ∗ inv(U), (14)

where

[U,V] = eig(Ad(i, j));

ud(i, j) = max eig(V), k(i, j) = ud(i, j) ∗ (vb − π)

and where π is a small tuning parameter, for the
first step calculation π = 0. Let us increase the max-
imum values of the first ds(i) dominant eigenvalues
for the matrix V as follows max eig(V) = 2 − k(i, j),
which due to (16) increases the dominant eigenval-
ues of the equivalent subsystem. Increasing π , the
degree of closed-loop stability for the equivalent sub-
system Ade(i, j) will also be increased, which ensures
the closed-loop LSS stability, robustness, and perfor-
mance, Siljak (1978) and Veselý (1993). The above
design procedure should be repeated ds(i) times to
increase for ith all subsystems ds(i) dominant eigen-
values in the matrix V.
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Let us assume a static output feedback with
gain matrix K that guarantees the stability of the
closed-loop equivalent subsystems. Then, the follow-
ing corollary to Theorem 3.5 holds.

Corollary 3.6: The closed-loop LSS (complex system)
is asymptotically stable if either of the following two
conditions holds:

• Ade(i, j) + B(i, j)KjC, i = 1, 2, . . . ,N, j = 1, 2, . . . ,
m in all vertices are Schur stable, that is, all closed-
loop equivalent subsystems are robustly stable.

•
|λk(Adi + BiKC)| ≤ |λk(vb ∗ Adi)|,
i = 1, 2, . . . ,N, k = 1, 2, . . . , ds(i) ≤ n (15)

holds for all closed-loop subsystems’ dominant eigen-
values.

If the stability conditions do not hold, increase the
value of the tuning parameter π and design a new
decentralised controller (Siljak, 1978; Veselý, 1993).
If the value of π approaches one and stability of the
equivalent subsystems and LSS is still not guaranteed,
change the structure of the decentralised controller,
and/or use another decentralised controller design
procedure (the authors recommend the regional pole
placement approach).

4. Examples

The aim of the two examples presented below
is to illustrate the advantages of the theory and
the efficiency of calculation of robust decentralised
controllers compared to known methods from the
literature.

4.1. First example

This example covers several real processes. A complex
uncertain system of order 7 consists of three subsys-
tems having orders 2, 3, and 2. The complex uncer-
tain polytopic system has two vertices (N = 2). For a
system with real parameters, see Appendix.

Auxiliary parameters are ro ∗ I ≥ P (Lyapmatrix),
ro = 25, and the tuning matrix Q = 0.4 ∗ I. The goal
is to design a robust PI decentralised controller. The
design procedure will be based on a simple condition
that ensures the stability of the closed-loop system:

the first difference in parameter-dependent Lyapunov
function needs to be negative definite (semidefinite).
This can be summarised as follows.

Let equivalent subsystems Ade(i, j), i = 1, 2, . . . ,N
and j = 1, 2, . . . ,m be given. To obtain a decentralised
robust PI controller let us assume that there are two
auxiliary matrices N1(j),N2(j) ∈ Rnj×nj and a positive
definite Lyapunov matrix P(i, j) exist such that the
following inequality holds for the first difference in
Lyapunov function:

�V(t) = x(t)TW(i, j)x(t) < 0,

W(i, j) = {w(i, j)}2×2},
w11(i, j) = P(i, j) + N1(j) + N1(j)T ,

w12(i, j) = −N1(j)T Ace(i, j) + N2(j),

w21(i, j) = w12(i, j)T ,

w22(i, j) = −N2(j)T Ace(i, j) − Ace(i, j)TN2(j)

+ Q(j) − P(i, j),

Ace(i, j) = Ade(i, j) + B(i, j)K(j),

K(j) = [(Kp(j) + Ki(j))C(j) Ki(j)].

The following two cases are presented.
Case a. For the calculation of LSS stability bound-

ary suppose that only one parameter v covers all three
subsystems. The tuning parameter π = 0.2. Using
BMI script (10), one obtains for vb = 1.2279 that the
complex system is stable without decentralised con-
trollers. Due to Corollary 3.4, note that if decentralised
controllers are designed to satisfy v ∈< 0, vb >, the
closed-loop complex system will be stable. The equiv-
alent subsystems for all i = 1, 2 and j = 1, 2, 3 are
calculated using (10) and three robust PI decentralised
controllers are obtained as

u(t)j = kpjCjx(t)j + kijCj

∞∑
to

x(t)j,

where

R1 : kp1 = −0.5772, ki1 = −1.0825,

R2 : kp2 = −1.8649, ki2 = −1.3502,

R3 : kp3 = −0.6122, ki3 = −1.1332,

or in symbolic way

R1 = −0.5772 − 1.0825
s

, R2 = −1.8649 − 1.3502
s

,
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R3 = −0.6122 − 1.1332
s

.

The absolute values of the closed-loop eigenvalues
for the complex system are for i = 1: EigLSS1 =
{0.9413, 0.9029, 0.9087, 0.9087, 0.1593, 0.4881, 0.4881,
0.4131, 0.4131, 0.496}, for i = 2: EigLSS2 = {0.9434,
0.9434, 0.903, 0.903, 0.1873, 0.4458, 0.4458, 0.4027,
0.4027, 0.5351}. The close-loop complex system is
stable.

Case b. For the same system as above, put the tuning
parameter π = 0. The obtained value of vb = 1.2279
is the same as in Case a. However, the obtained
decentralised controllers do not guarantee the stabil-
ity of LSS. The closed-loop system is unstable, but it
is very close to the stability boundary, the maximal
value of the closed-loop eigenvalues being as follows:
EigLSS1 = {1.0221, 1.0221, . . . , 0.1956}, EigLSS2 =
{1.0081, 1.0081, . . . , 0.2054}. The above two cases
illustrate the role of the tuning parameter π in the
decentralised controller design procedure.

4.2. Second example

This example illustrates the design of a robust
PID decentralised controller using the method of
regional pole placement, Gahinet et al. (1996), Peau-
celle et al. (2000), Rosinová et al. (2021), and Yang
et al. (2022). Following Peaucelle et al. (2000), the DR
region for closed-loop subsystem is defined as

DR = {z ∈ C : R11 + R12z + RT12z
∗ + R22zz∗ < 0}

(16)
If the all closed-loop subsystem eigenvalues lie in the
prescribed DR region, the closed-loop matrix Adc(ξ)

is said to be DR stable. The closed-loop system Adc(ξ)

isDR stable if and only if there exists a positive definite
matrix P(ξ) such that

R11 ⊗ P(ξ) + R12 ⊗ P(ξ)Adc(ξ) + RT12 ⊗ Adc(ξ)T

+ R22 ⊗ Adc(ξ)TP(ξ)Adc(ξ) < 0

where ⊗ stands for the Kronecker product. Let us
recall (Rosinová et al., 2021) that the extended first
Lyapunov function difference for the DR region is as
follows:

�Vext = vT
[
R11 ⊗ P(ξ) R12 ⊗ P(ξ)

(∗) R22 ⊗ P()

]
v ≤ 0,

where vT = [(1d ⊗ x(t)T) (1d ⊗ x(t + 1)T)].

The extended first difference in the Lyapunov func-
tion will be used to design a robust decentralised con-
troller. The PID controller algorithm is given as in (6).
Using the augmented state as a new state of the con-
troller dynamics (Rosinová et al., 2021), a PID control
algorithm will be obtained in the following form

u(t) = [kp + ki + kd kd ki − kd]y(t) = Ky(t).

See Rosinová et al. (2021) for more details. The com-
plex system is given by (1) as an LSS system of order
four with two subsystems of order 2 each, and with a
polytopic uncertainty having two vertices,N = 2. The
constraints of the Lyapunov matrix P ≤ 500 ∗ I. The
system matrices are

i = 1

A1 =

⎡
⎢⎢⎣
0.5 0.8 0.1 0.15
0.1 0.3 0.25 0.15
0.11 0.22 0.6 0.65
0.08 0.13 0.1432 0.4

⎤
⎥⎥⎦ ,

B1 =

⎡
⎢⎢⎣
1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ ,

i = 2

A2 =

⎡
⎢⎢⎣
0.38 0.55 0.095 0.11
0.12 0.22 0.22 0.13
0.09 0.15 0.55 0.58
0.08 0.11 0.161 0.38

⎤
⎥⎥⎦ ,

B2 = B1, C =
[
1 0 0 0
0 0 1 0

]
.

At the first step, the value of vb is calculated. We
obtain vb = 0.8723, which indicates that the LSS is
unstable. The DR region (16) is chosen as a circle
with centre at the origin and radius rd and the fol-
lowing three cases are considered. In the first case,
equivalent subsystems are calculated by (14). For such
equivalent subsystems, the LSS is stable for the DR
region with radius rd ∈ 〈0.55 − 0.71〉. In the second
case, the equivalent subsystems are defined as follows
Ade(i, j) = Ad(i, j)(1/(vb − π)), where π = 0 is the
tuning parameter, and for the prescribed DR region,
the LSS is stable for radius rd ∈ 〈0.48 − 0.91〉. In the
third case, the equivalent subsystems are chosen as
follows:

Ade(i, j) = Ad(i, j) ∗ blockdiag(inv[v − πo v − πo
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v − π1 v − π1]); πo = 0, π1 = 0.3.

Now, we will proceed with the second case of equiv-
alent subsystems. The goal is to design two PID
robust decentralised controllers such that the closed-
loop equivalent subsystems’ eigenvalues lay in the pre-
scribed DR region. In what follows, we will consider
two cases of theDR region with different radii rd = 0.5
and rd = 0.95. For instance, consider the extended
state subsystem model of the first subsystem with a
PID controller as in Rosinová et al. (2021)

Ad(1, 1) =

⎡
⎢⎢⎣
0.5 0.8 0 0
0.1 0.3 0 0
0 0 0 1
1 0 0 1

⎤
⎥⎥⎦ ,

Eig(Ad(1, 1)) = {0, 1, 0.7, 0.1}.
The eigenvalues 1, 0 are due to the I, D part of
controller. This simple example shows that the suf-
ficient LSS robust stability condition (15) may not
be satisfied for all eigenvalues. Stability boundary of
the complex system is rsb = 1.vb = 0.8723, (13). For
rd = 0.5, using the approach described in Rosinová
et al. (2021), one obtains the following decentralised
controller parameters.

For the first subsystem:

R1 = −0.1932 − 1.7542
s

− 0.028 s

and for the second one:

R2 = −0.2822 − 1.7912
s

− 0.0509 s.

The absolute values of the closed-loop subsystems
eigenvalues for the nominal subsystemmodel and two
vertices Eigclosednomij, i = 1, 2, j = 1, 2 are

for the first vertex, i = 1

Eigclosednom11 = {0.415, 0.3409, 0.3409, 0.174},
Eigclosednom12 = {0.5673, 0.348, 0.348, 0.2961},

and for the second vertex, i = 2

Eigclosednom21 = {0.65, 0.3113, 0.3113, 0.00973},
Eigclosednom22 = {0.6637, 0.3342, 0.3342, 0.2608}.

Note that the DR region is prescribed for both equiva-
lent subsystems. For the obtained robust decentralised
controllers, the LSS with two vertices is stable, and the

absolute values of the closed-loop eigenvalues are as
follows.

i = 1

EigclosedLSS1 = {0.6111, 0.5960, 0.5960, 0.2759,
0.3048, 0.3048, 0.271, 0.271},

i = 2

EigcloseLSS2 = {0.7045, 0.5052, 0.4803, 0.4803,
0.3561, 0.3561, 0.1029, 0.2512}.

Based on (15), the stability test of the LSS is determined
for the case of i = 1 and two subsystems.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.7
0.1
0
1

0.82
0.1789

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0.8723 ≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.415
0.3409
0.3409
0.174
0.5673
0.348
0.348
0.2961

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yes
yes
no
no
yes
yes
no
no

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Obtained from the above inequality, the value of
ds(i, j), (15) is for two subsystems ds(i) = 2 + 2, that is
for two subsystems, all four dominant eigenvalues sat-
isfy inequality (15), guaranteeing in this way the robust
stability of the complex system.

Another experiment shows that the robust stability
condition (15) is satisfied for rd = 0.84. In this case of
i = 1, 2 and two subsystems the condition ds(i, j) > 0
holds and the LSS is stable as can be seen from the
closed-loop LSS eigenvalues.

EigclosedLSS1 = {0.8664, . . . , 0.2717},
EigclosedLSS2 = {0.9206, . . . , 0.2625}.

Another interesting experiment is to consider rd =
0.91. For i = 1, 2 and two subsystems, the stability
conditions (15) are as follows:

i = 1,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.7
0.1
0
1

0.82
0.1789

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0.8723 ≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8354
0.5932
0.5932
0.2148
0.9139
0.5936
0.5936
0.2952

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yes
yes
no
no
no
yes
no
no

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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i = 2,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5691
0.0309

0
1

0.7822
0.1478

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0.8723 ≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9414
0.5525
0.5525
0.1612
0.9624
0.5856
0.5856
0.2736

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

no
no
no
no
no
yes
no
no

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the radius of rd = 0.91, the eigenvalues of LSS
at the two vertices indicate that the LSS is stable but
very near to the stability boundary. The condition (15)
indicates the same problem, that is, ds(2, 1) = 0, but
ds(1, 1) = 2. The closed-loop eigenvalues of the LSS
are

EigclosedLSS1 = {0.9359, . . . , 0.2744},
EigclosedLSS2 = {0.9902, . . . , 0.2645}.

We have done still another experiment, when the
equivalent subsystems are given as follows.

Ade(i, j) = Ad(i, j) ∗ blockdiag(inv[v − πo v − πo

v − π1 v − π1]); πo = 0, π1 = 0.3.

The radius of the DR region is still rd = 0.91. The
stability requirement determines the following val-
ues of the coefficients ds(i, j) as ds(1, 1) = 2, ds(1, 2) =
2, ds(2, 1) = 1, ds(2, 2) = 2, that is, the complex sys-
tem is stable and the closed-loop eigenvalues are

EigLSS1 = {0.7807, . . . , 0.2891},
EigLSS2 = {0.8405, . . . , 0.2278}.

When comparing the above two results for the same
radius, it is clear that best results are obtained with the
third equivalent subsystem.

Now, we take the radius ofDR region rd = 0.95. The
absolute values of the closed-loop LSS eigenvalues for
the two vertices i = 1, 2 are

EigclosedLSS1 = {0.9758, 0.836, . . . , 0.2757},
EigclosedLSS2 = {1.03, 0.9397, . . . , 0.2657}.

This indicates that the LSS is unstable. Stability
test (15) for i = 1, 2 and two subsystems gives

i = 1,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.7
0.1
0
1

0.82
0.1789

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0.8723 ≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.876
0.5926
0.5926
0.2169
0.9535
0.5946
0.5946
0.2968

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

no
yes
no
no
no
yes
no
no

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

i = 2,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5691
0.0309

0
1

0.7822
0.1478

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0.8723 ≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9826
0.5527
0.5527
0.1629
1.03
0.5866
0.5866
0.2755

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

no
no
no
no
no
yes
no
no

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Stability condition (15) is not satisfied because for
i = 2 and for the first subsystem, it holds ds(2, 1) = 0,
while the others ds(i, j) = 1. Thus, the closed-loop LSS
is not stable, see Remark 3.1.

Summarising the above results to a table from the
view of robust stability of the LSS, we obtain Table 1.

Table 1 shows that the robust stability boundary
condition rsb = 0.8723 is satisfied for all radii includ-
ing rd = 0.95. This indicates that the robust stability
boundary condition could be used with the sufficient
condition as the stability criterion for the LSS. This
example also shows that the third method of defin-
ing the equivalent subsystems is superior. The above
two examples show, if the number of subsystems grows
only the first step controller design procedure com-
putation complexity increases, the complexity of the
decentralised controllers design procedure does not
change.

Table 1. The view of robust stability of the LSS.

Uncert i = 1 i = 1 i = 2 i = 2 Result
Subs 1 2 1 2 –
rd ds(1,1) ds(1,2) ds(2,1) ds(2,2) –

0.5 2 2 2 2 Stable
0.84 2 1 1 1 Stable
0.88 2 1 0 1 Stable
0.91 2 1 0 1 Stable
0.91 2 2 1 2 Stable3a

0.95 1 1 0 1 Unstable
aThis refers to the third equivalent subsystemmodel.
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5. Conclusion

This article presents a new method for designing a
robust decentralised controller for a linear complex
discrete-time system. The method consists of two
steps. In the first step, dynamic properties of the sub-
systems are calculated that will ensure the stability,
robustness and performance of the complex system.
In the second step, decentralised controllers of the
subsystems are designed to meet the requirements
obtained in the first step. The main advantage of the
present method is that decentralised controllers are
designed at the subsystem level without the need to
consider the interaction links.

The benefits of this paper can be summarised as
follows:

(1) This paper fundamentally changes the view of
a complex system. The complex system is not
divided according to the size of the interaction
links, whether the bonds are strong or weak, but
according to whether the complex system is stable
or not.

(2) For a stable complex system, the design procedure
of a decentralised controller is significantly sim-
pler and the design principle is that the dynamic
properties of the subsystem with the proposed
controller should not be deteriorated.

(3) For an unstable system, we have proposed to use
an equivalent subsystem approach, which simpli-
fies the decentralised controller design process.
One of the best methods to design decentralised
controllers is the regional pole placement.

(4) We have obtained a necessary and sufficient con-
dition for a decentralised controller (9).

(5) The conservatism of the presented method
depends on the used methods of decentralised
controller design in the second step, see
Remark 3.1.

(6) We have obtained the new theoretical results
about the stability of complex system stability cal-
culation for discrete-time complex systems.

(7) Inequality (10) belongs to the class of BMI. If the
complex system is of a high order, the elimina-
tion lemma and the linearisation approach should
be used to obtain an LMI formulation. Efficient
solvers exist in the literature.

(8) Some questions about the stability of a complex
system are left for further research, especially a

better interpretation of stability conditions (12)
and the choice of the equivalent subsystem struc-
ture, see Second Example.
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Appendix. Parameters of complex system from
Section 4.1

Assume that uncertainties ξi, i = 1, 2, . . . ,N are constants.
First vertex, i = 1

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.22 0.7 0.0057 0.0175
0.1 0.25 0.045 0.0125
0.067 0.01 0.12 0.37
0.003 0.0123 0.4 0.04
0.0175 0.01 0.3 0.41
0.005 0.0088 0.02 0.0107
0.0175 0.01 0.05 0.03

0.05 0.0275 0.0075
0.025 0.0175 0.01
0.28 0.0375 0.0092
0.1 0.05 0.025
0.12 0.0375 0.01
0.03 0.35 0.31
0.0027 0.412 0.35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Second vertex, i = 2

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.21 0.65 0.0032 0.0175
0.1 0.33 0.03 0.0075

0.0055 0.0103 0.161 0.35
0.003 0.0123 0.35 0.13
0.0175 0.0088 0.02 0.0083
0.0187 0.0103 0.005 0.0255

0.03 0.0025 0.0075
0.02 0.0175 0.01
0.23 0.0375 0.0067
0.05 0.03 0.025
0.003 0.25 0.1523
0.0027 0.25 0.34

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Input and output matrices

B1 = B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1 = C2 =
⎡
⎣1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎤
⎦ .
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